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ROBOTS DO FAIL: LONG-
TERM AUTONOMY

‣ goal-directed autonomy

‣ tell a robot what to achieve, 
not how to achieve it

‣ but it’s all very uncertain and 
prone to failure

‣ requires re-planning when 
failing

(exists  
  (?o - object) 
  (and  
    (= (label ?o) magazine) 
    (K (position ?o))
  )
)

Robots do fail: Dealing with 
uncertainty and errors in goal-

driven autonomy

Disclaimer: This is a brief recap 
of what Andrzej Prognosis 

talked about earlier on.



DORA IN MY (OLD) HOME



global 2D line-based 
SLAM

local 3D grid map
node-based space 

discretisation 

non-monotonic 
clustering of nodes into 

rooms

ontology of object 
and room types

pre-trained visual recognisers

belief modelling and 
continual planning

Metric and Topologic Maps



DORA SEARCHING





cereals are found in 
kitchens

dining rooms

living rooms?



P(cornflakes|kitchen)=0.4

more an “educated guess”!

Deterministic and Probabilistic  
Domain knowledge

(see Pronobis’ talk)



WHERE TO SEARCH?
cornflakes not likely here!



How to reason about 
knowledge and perception?

How to make informed 
choices of actions?

How to find object most 
efficiently?



A DOMAIN-INDEPENDENT 
PLANNING APPROACH

From a given (perceived) 
current belief state

find a sequence of actions

to reach an intended goal state

(is-in ‘robot’ place-3)  
(prob (obj-located  
   cornflakes kitchen)  
  0.6)  
...

(goto ‘robot’ place-4)  
...

(and (kval ‘robot’ (related-to object-3)) (label object-3 

Uncertain  
Belief States



• sensing algorithms can fail 

• not seeing the object

• mis-classifying a room

• common-sense knowledge can be wrong, even 
though useful in most cases

DEALING WITH 
UNCERTAINTY

it’s all so uncertain... how to deal with it?
Hanheide et al.: IJCAI, 2011



KNOWLEDGE 
REPRESENTATION Uncertain  

Belief States



PLANNING UNDER 
UNCERTAINTY

• world state cannot be observed directly  
(it’s computer vision after all)

• probabilistic state space can be intractably 
huge 

• domain-independent solution: switching 
planner

• make assumptions in a sequential session to 
generate most rewarding sequence of actions

• contingent session for observation planning
• (dis)confirmation of assumptions by 

contingent session
Hanheide et al., AIJ 2016 

Göbelbecker et al., AAAI 2011

Continual Planner

Straight line plan

observation

Decision-theoretic Planner

Policy for achieving observation

Plan Execution

replanning
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INCOMPLETE KNOWLEDGE: 
DORA SEARCHING A MAGAZINE

‣ explore the 
environment to 
extend knowledge

‣ model uncertainty

‣ replan in case of 
errors http://lncn.eu/aijvideo 

(exists  
  (?o - object) 
  (and  
    (= (label ?o) magazine) 
    (K (position ?o))
  )
)

Hanheide, M. et al., 2016. Robot task planning and explanation in open and uncertain worlds. Artificial Intelligence.

https://youtu.be/utfCAZX12LU?list=PLnS6TQ_QsDUxCrv1fbzPHn0LoTwc_n8NF
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DORA SEARCHING A MAGAZINE  
MAKING ASSUMPTIONS EXPLICIT

‣ Modelling 
uncertainty 
probabilistically 
and plan with it

‣ explicit expect 
changehttp://lncn.eu/aijvideo 

(exists  
  (?o - object) 
  (and  
    (= (label ?o) magazine) 
    (K (position ?o))
  )
)

Hanheide, M. et al., 2016. Robot task planning and explanation in open and uncertain worlds. Artificial Intelligence.

Deterministic and Probabilistic  
Domain knowledge

https://youtu.be/utfCAZX12LU?list=PLnS6TQ_QsDUxCrv1fbzPHn0LoTwc_n8NF
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DORA SEARCHING A MAGAZINE  
DEALING WITH & EXPLAINING ERRORS

‣ a principled 
approach to 
dealing with 
surprise

‣ resolve them 
interactivelyhttp://lncn.eu/aijvideo 

(exists  
  (?o - object) 
  (and  
    (= (label ?o) magazine) 
    (K (position ?o))
  )
)

Hanheide, M. et al., 2016. Robot task planning and explanation in open and uncertain worlds. Artificial Intelligence.

https://youtu.be/utfCAZX12LU?list=PLnS6TQ_QsDUxCrv1fbzPHn0LoTwc_n8NF


!

SYNOPSIS

Robots do fail: Dealing with 
uncertainty and errors in goal-

driven autonomy

Embrace the Change: 
Prospects and Challenges of 
Long-term Autonomy and 

Interaction

Dealing with change 
was very limited so 

far
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Robust, 
intelligent, 

autonomous 
behaviour

Long run-
times in 
everyday 

environments

Novel 
opportunities 

to learn 
structure 

environment

Exploitation of 
structure for 

improved 
performance

running for weeks

Embrace the 
Change: Prospects 
and Challenges of 

Long-term 
Autonomy and 

Interaction
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LONG-LIVED AND 
INTELLIGENT

working 24/7
working 

intelligently

exploiting long-term experience



!
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Bob at 
G4S Technology, UK 

Henry at 
Haus der Barmherzigkeit, 

Austria

1030m3   
17 Nodes 
14 days

690m3   
46 Nodes
16 days 
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Exploitation of 
structure for 

improved 
performance

Novel 
opportunities 

to learn 
structure 

environment

Long run-
times in 
everyday 

environments

Robust, 
intelligent, 

autonomous 
behaviour

running for weeks

learn how the world changes

Embrace the 
Change: Prospects 
and Challenges of 

Long-term 
Autonomy and 

Interaction
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A ROBOT PATROLLING  
(ONE WEEK)



The world is not static!

But it’s full of routines  
(nearly cyclostationary processes)
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WHY AND HOW TO MODEL 
ROUTINES?

‣ Why:

‣ better localisation

‣ better planning

‣ detect deviations

‣ predict the future  

‣ How:

‣ (binary) states 
  

‣ derive spectral model using FT  

‣ keep the most prominent S

Periodic Probability 
Density Functions
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WHY AND HOW TO MODEL 
ROUTINES?

‣ Why:

‣ better localisation

‣ better planning

‣ detect deviations

‣ predict the future  

‣ How:

‣ (binary) states 
  

‣ derive spectral model using FT  

‣ keep the most prominent S

now extended to 
real-valued states 
and non-uniform 

sampling

Indeed, our recent 
model also takes 

recency into 
account
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FREQUENCY MAP 
ENHANCEMENT
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STATES?

‣ Could be almost anything
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VISUAL TOPOLOGICAL 
LOCALISATION

[“Long-Term Topological Localisation for Service Robots in Dynamic Environments using Spectral Maps" that will be presented 
at IEEE/RSJ International Conference on Intelligent Robots and Systems 2014]
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A FEW RESULTS

[Krajnic et al “Long-Term Topological Localisation for Service Robots in Dynamic Environments using Spectral Maps”, IEEE/RSJ 
International Conference on Intelligent Robots and Systems 2014]

1 week prediction 3 months prediction
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PREDICT PRESENCE OF 
HUMANS

‣ use spectral models to model 
presence of people/people

‣ similar to Dora, but dynamic 
prediction

‣ find people/objects faster

[Krajnic et al,  “Where’s Waldo at time t? Using Spatio-
Temporal Models for Mobile Robot Search. “,  ICRA 2015]

related: Th, 10:20 
Paper ThT11.19
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PREDICT 2D GRID MAPS
‣ better accuracy and robustness 

in localisation

Fig. 4: Overview and 2D occupancy grid of the Witham
Wharf office.

quality of the built maps, we quantified the amount of noise
in the maps.

A. Localisation accuracy

To evaluate the accuracy of the robot self-localization,
we installed an independent localisation infrastructure at
the Witham Wharf office. The infrastructure consisted of
two ceiling-mounted fish eye Kodak PixPro SP360 cameras,
a large circular marker on top of the robot and another
set of markers close to the robot’s charging station. While
the marker on the robot’s top was used to determine its
x and y position, the markers positioned at the charging
station area allowed for precise, independent estimation of
the robot heading. Detection and position estimation of
the markers, localisation system calibration and coordinate
system setup was based on a freely-available, open-source
method presented in [24]. To ensure millimetre accuracy of
the localisation system, we had to use rather large markers
as suggested by the mathematical model of the system [24],
see Figure 5. We selected approximately 2000 images in 20
different image sequences captured by the overhead cameras
and established the positions of the robot. To avoid potential
accuracy drop-off caused by the use of the wide-angle lens
cameras, the selected images have the robot position close
to the center of the image.

The individual sequences captured the movement of the
robot through a 1.5 m wide corridor outlined by eight storage
cupboards. These cupboards are used by the research staff of
the office and some of the cupboard doors are typically open
during the day and closed at night. The cupboards are 0.5 m
deep, so when a cupboard door is left open, the corridor
appears to be 2 m instead of 1.5 m wide and its center appears
to be offset by 0.25 m aside. Thus, when moving through this
corridor, the discrepancy of the 2D map with the perceived

Fig. 5: Example image captured by the ceiling-mounted
camera of the external localisation system. The position of
the circular marker on top of the robot is used as a ground
truth to determine the accuracy of the robot’s localization
system.

environment state might negatively affect the accuracy of
robot self-localization.

In our case, the 20 m range of the robot laser rangefinder
ensures that it will almost always perceive areas that did not
change, which should keep the position estimate accurate.
However, if the range of the laser sensor was shorter, e.g.
when using a Hokyo URG04, then the localization accuracy
would be affected severely.

To estimate the impact of the environment change and sen-
sor range on the localization precision, we processed laser,
odometry and ground truth data from 20 different passes of
the robot through the monitored corridor. To emulate the
limited range of the laser rangefinder, we trimmed the laser
data at different lengths. Using the trimmed data from 20
different runs, we performed standard ROS-based AMCL
localisation on the ‘static’, ‘averaged’ and ‘predicted’ 2d
maps and compared the robot positions to the ground truth
obtained by the overhead cameras. The results shown in
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Fig. 6: Localization error for different ranges of the laser
scanner and different types of the maps. Predicting a map
for a particular time improves localization accuracy, although
the improvement is only marginal for long-range sensors.

Figure 6 indicate that use of the time-specific, predicted maps

results improves the localization precision in a significant
way if the range of the laser rangefinder is lower than the
overall map size. If the rangefinder provides a complete
overview of the operational environment, the reduction of the
position estimation error is only marginal. However, a small
difference in localization precision can have a significant
impact on the efficiency of the robot navigation and quality
of the constructed maps.

B. Navigation efficiency

To evaluate the navigation efficiency, we processed naviga-
tion statistics of 60 different patrol runs. During each patrol,
the robot undocked from its charging station, visited several
different locations in the office (see Figure 2) and returned
back to recharge. The data from each patrol run contains
the robot’s average speed and the number of events where
standard navigation behaviour failed and the robot had to
perform custom recovery behaviours in order to proceed with
its patrol. The gathered navigation statistics were divided into
three groups of 20 patrols each. The first group contained
patrols that were happening during weekends, where the
amount of environment changes in the office is more likely to
be low. The second group contained patrols from weekday
afternoons, where the robot was using an ‘averaged’ map,
which slowly adapts to the observed change. The third group
contained patrols from weekday afternoons, where the robot
was using a ‘predicted’, time specific map. Table I indicates

TABLE I: Navigation statistics

Environment Static Changing
Map Static Static Predicted

Average speed [ms ] 0.21 0.15 0.18
Recovery events [-] 1 21 12

that in a static environment, the robot could navigate effi-
ciently even when using a static map, but as soon as the
environment began to change, the navigation efficiency was
affected in a negative way. However, the negative effect of the
changes was slightly lowered through the use of the proposed
map, which represents the environment changes in an explicit
way.

C. Map quality

This experiment evaluates the effect of an anomalous map
detection mechanism. This mechanism verifies whether a
newly created map conforms with the representation that was
gathered so far, which allows to reject corrupt or otherwise
incorrect maps. To verify the utility of the anomaly detection
mechanism, we replayed laser and odometry data from 100
consecutive patrols with the anomaly detection component
being deactivated and compared the resulting spatio-temporal
representation with the one built while the anomaly detection
was used to rejectd potentially corrupted maps. Figure 7
shows the amount of changes detected in the consecutively
created maps. The figure shows that at a certain point (run
36), integration of an incorrect map corrupts the FreMEn

grid, which breaks the map update process. However, the
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Fig. 7: Effect of the anomalous map detection and rejection.
The peak in the graph indicates mapping system failure and
consequent discrepancy of the individual maps. The two
maps show the resulting models with and without anomaly
rejection.

anomalous map rejection mechanism prevents this situation
and the map update process continues to produce a faithful
2D environment model.

VI. CONCLUSION

We presented an approach for mobile robot life-long map-
ping and persistent localization in changing environments.
First, we show that the ability to update the environment
model does not require introduction of custom modules to
the ROS navigation stack. Instead, the navigation stack can
be augmented by the gmapping module that builds a new
map every time the robot navigates around its operational en-
vironment. To ensure that the new map is consistent with the
previously built model, we propose to use the AMCL module
position estimation as virtual odometry for gmapping. Sec-
ond, we demonstrate that maps of the individual navigation
runs can be integrated into a spatio-temporal model that
captures the persistency and periodicity of the environment
changes. This spatio-temporal environment representation,
which explicitly models the environment dynamics, is used
to predict time-specific maps, which serve our robot both for
localization, path-planning and navigation.

Our experimental evaluation, based on data gathered over
the course of several weeks, shows that using the model’s
predictive capabilities improves the accuracy of robot local-
ization and increases the efficiency of the robot navigation.
The tests indicate that the proposed environment model is
especially beneficial for mobile robots that do not have a
complete overview of their environment, e.g. due to the
limited sensor range such as when operating outdoors or in
large warehouses.

While encouraging, the experiments were too short to
demonstrate that the proposed method enables life-long
autonomous operation in changing environments. Therefore,

more on Th, 14:05  
Paper ThT21.10:

Persistent Localization and Life-
Long Mapping in Changing 

Environments Using the Frequency 
Map Enhancement



TOPOLOGICAL EDGE TRAVERSABILITY 
MODELLING USING FREMEN

Fig. 4. reconstructed signal for traversability and time along different time periods, top left figure is the action outcomes used for the model building, the
remaining three figures represent the predicted pe(t) state along different time frames, one month (top right), one week (bottom left) and one day (bottom
right). Weekly and monthly periodicities are presented starting from Monday, the day depicted in the bottom left figure is a Thursday.

policies that maximise overall expected success of the LTL
task.

In order to generate a policy at a given time t, we start
by creating an MDP model based on the topological map
T = hV,E,N,nav , PEi. This Navigation MDP at time t

is defined as a tuple Mt = hS, s, A, �i, where: (i) S =
V [ {sf} is a finite set of states, corresponding to the
topological nodes, plus a dump state sf , which is reached
after a navigation action failure; (ii) s 2 S is the initial
state, corresponding to the current position of the robot in
the environment; (iii) A = E is a finite set of actions,
corresponding to the edges in the topological map; (iv)
� : S ⇥A⇥ S ! [0, 1] is a probabilistic transition function,
where

P
s02S �(s, a, s0) 2 {0, 1} for all s 2 S, a 2 A. For

vi, vj 2 S, if there is an edge e = (vi, vj) in the topological
map, we define �(vi, e, vj) = pe(t), �(vi, e, sf ) = 1� pe(t)
and �(vi, e, v) = 0 for all v 2 S \ {vj , sf}.

In [20], it is shown how, given a co-safe LTL formula
' and a cost function defined over state-action pairs of the
MDP (in our case, such function would be the expected time
to navigate between two nodes in the environment), one can
create policies that minimize the accumulated cost to gener-
ate a trace of the system that satisfies '. Broadly speaking,
LTL allows for the specification of goals that are not simply
reaching a given target node in the environment, but can
be temporally extended goals that require, for example, a
set of nodes to be visited in a given order, or to visit a
given node while avoiding a set of forbidden nodes. The co-
safe fragment of LTL contains all the formulas that can be
satisfied by a finite trace of the system. An example of such
a task is a mail delivery robot that needs to distribute mail to
different rooms in a building, and minimise the time spent
in delivery so it can be available to do other tasks as soon
as possible.

We adapted the approach in [20], and use the PRISM

model checker [21] to generate a policy that maximizes
the probability of satisfying a co-safe LTL formula, i.e., we
generate the policy that fulfils the task while minimizing the
probability of occurrence of a continuous navigation failure.

The fact that we can specify tasks that involve visiting
more than one node in the topological map allows us to
analyse the different choices taken by the robot at different
times. More specifically, for the navigation MDPs obtained
from the topological map depicted in Fig. 2, we analyse the
policies obtained for formula (F v1_F v14), i.e., “visit either
node v1 or node v14”. This task allows the policy to choose
which node to try to visit first, taking into account the current
position of the robot, and the traversability probabilities for
the edges in the topological map. Furthermore, it is a type
of task that is common for mobile robots. For example, a
data gathering robot might want to unload its data, and in
nodes v1 and v14 there are data unloading stations it can use.
Thus, to increase the robustness of the system, we want the
robot to choose the station it can navigate to with the lowest
probability of failure.

In Table III, we show the probabilities of being able
to execute the task, starting on v5, without any navigation
failures, for different times of day. As expected, it is possible
to see that during the times where it is more probable
for people to be present in the office, the probability of
fulfilling the task without navigation failures is higher. This
is because the robot asks for human intervention when he has
problems navigating, and the presence of people to help it
increases the probability of fulfilling the navigation task (we
do not consider these interactions with humans as failures).
Furthermore, we also analyse the optimal action for v5 at
different times of day. This illustrates the choice the robot
makes on which area of the environment to visit when at
v5. We depict the choice of visiting v14 in light gray, and
the choice of visiting v1 in dark gray. This choice is heavily

J. Pulido Fentanes, B. Lacerda, T. Krajník, N. Hawes, and M. Hanheide. 
Now or later? predicting and maximising success of navigation actions 
from long-term experience. In ICRA, 2015.
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ANTICIPATING USERS’ TASKS
‣ Model probability of 

interaction “success” as 
periodic probability 
distribution

‣ Exploit prediction to 
improve where the service 
is offered when

‣ Explore actively to learn

‣ greedy 50/50 exploration/
exploitation

Fig. 4. reconstructed signal for traversability and time along different time periods, top left figure is the action outcomes used for the model building, the
remaining three figures represent the predicted pe(t) state along different time frames, one month (top right), one week (bottom left) and one day (bottom
right). Weekly and monthly periodicities are presented starting from Monday, the day depicted in the bottom left figure is a Thursday.

policies that maximise overall expected success of the LTL
task.

In order to generate a policy at a given time t, we start
by creating an MDP model based on the topological map
T = hV,E,N,nav , PEi. This Navigation MDP at time t

is defined as a tuple Mt = hS, s, A, �i, where: (i) S =
V [ {sf} is a finite set of states, corresponding to the
topological nodes, plus a dump state sf , which is reached
after a navigation action failure; (ii) s 2 S is the initial
state, corresponding to the current position of the robot in
the environment; (iii) A = E is a finite set of actions,
corresponding to the edges in the topological map; (iv)
� : S ⇥A⇥ S ! [0, 1] is a probabilistic transition function,
where

P
s02S �(s, a, s0) 2 {0, 1} for all s 2 S, a 2 A. For

vi, vj 2 S, if there is an edge e = (vi, vj) in the topological
map, we define �(vi, e, vj) = pe(t), �(vi, e, sf ) = 1� pe(t)
and �(vi, e, v) = 0 for all v 2 S \ {vj , sf}.

In [20], it is shown how, given a co-safe LTL formula
' and a cost function defined over state-action pairs of the
MDP (in our case, such function would be the expected time
to navigate between two nodes in the environment), one can
create policies that minimize the accumulated cost to gener-
ate a trace of the system that satisfies '. Broadly speaking,
LTL allows for the specification of goals that are not simply
reaching a given target node in the environment, but can
be temporally extended goals that require, for example, a
set of nodes to be visited in a given order, or to visit a
given node while avoiding a set of forbidden nodes. The co-
safe fragment of LTL contains all the formulas that can be
satisfied by a finite trace of the system. An example of such
a task is a mail delivery robot that needs to distribute mail to
different rooms in a building, and minimise the time spent
in delivery so it can be available to do other tasks as soon
as possible.

We adapted the approach in [20], and use the PRISM

model checker [21] to generate a policy that maximizes
the probability of satisfying a co-safe LTL formula, i.e., we
generate the policy that fulfils the task while minimizing the
probability of occurrence of a continuous navigation failure.

The fact that we can specify tasks that involve visiting
more than one node in the topological map allows us to
analyse the different choices taken by the robot at different
times. More specifically, for the navigation MDPs obtained
from the topological map depicted in Fig. 2, we analyse the
policies obtained for formula (F v1_F v14), i.e., “visit either
node v1 or node v14”. This task allows the policy to choose
which node to try to visit first, taking into account the current
position of the robot, and the traversability probabilities for
the edges in the topological map. Furthermore, it is a type
of task that is common for mobile robots. For example, a
data gathering robot might want to unload its data, and in
nodes v1 and v14 there are data unloading stations it can use.
Thus, to increase the robustness of the system, we want the
robot to choose the station it can navigate to with the lowest
probability of failure.

In Table III, we show the probabilities of being able
to execute the task, starting on v5, without any navigation
failures, for different times of day. As expected, it is possible
to see that during the times where it is more probable
for people to be present in the office, the probability of
fulfilling the task without navigation failures is higher. This
is because the robot asks for human intervention when he has
problems navigating, and the presence of people to help it
increases the probability of fulfilling the navigation task (we
do not consider these interactions with humans as failures).
Furthermore, we also analyse the optimal action for v5 at
different times of day. This illustrates the choice the robot
makes on which area of the environment to visit when at
v5. We depict the choice of visiting v14 in light gray, and
the choice of visiting v1 in dark gray. This choice is heavily
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ADAPTIVE AUTONOMY

from experience learn 
to do what your users 

want
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Menu 25 61 23 34 43 48 34 36 69 49 23 37 7 489
Weather 29 37 28 34 35 44 36 28 45 33 10 20 7 386

News 21 33 24 34 31 29 14 22 36 29 13 41 3 330
Photo 165 127 96 128 79 110 111 110 170 62 71 69 10 1308
SUM 240 258 171 230 188 231 195 196 320 173 117 167 27 2513

Table 1: Contingency Table of information screens requested in dependency of the 13 locations chosen for

this analysis. The names of the locations (in columns) correspond to the ones in Fig. 3. ”ChargingPoint” has

been omitted from this study.

6. DISCUSSION
Info-terminal scheduling. While H1 is confirmed and
the robot gradually learned the spatio-temporal dynamics
of people’s usage patterns and adjusted its schedule to im-
prove the usage of the info-terminal, the schedule building
strategy was rather simple. First, the strategy ignored trav-
elling times between the individual locations, so the schedule
sometimes produced sequences of location visits, where the
robot spend more time navigating than o↵ering the info-
terminal service. Moreover, the exploration/exploitation
dilemma was addressed not by using two di↵erent strate-
gies, but simply by combining the exploration and exploita-
tion utility in a single function (3) with an arbitrarily chosen
exploration/exploitation ratio ✏. One could argue not only
that the utility function is suboptimal for this task, but also
that exploitation requires a di↵erent, more aggressive strat-
egy than the Monte-Carlo scheduling scheme used for explo-
ration. Since there are multiple options how to address the
service scheduling problem and verification of each option
would take at least 4 weeks, we already used the temporal
models learned by the robot in the deployment to create
a dynamic simulation of the deployment environment. Us-
ing this simulator, we tested over 50 di↵erent scheduling
strategies, service utility functions, path planning policies
and their settings. These simulations indicate 2 that a more
complex utility function in combination with path planning
that takes into account the distance between the locations
can increase the number of potential interactions by more
than 100%. Thus, for the next deployment of the robot, we
plan to implement these improvements and compare them
to the original scheduling method.
Usage Patterns. As can also be seen in Fig. 3 there is
not only a dynamic model, but also a static trend indicating
that some locations are more popular than others. Of course,
this static trend is also represented in the spatio-temporal
model as µ for each location (see eq. 1), but looking at it a
bit closer can give us some indication of the general use of
the info-terminal. The most successful location (in terms of
number of info-terminal provisions that lead to actual inter-
actions with users) is ”lifts”with 68.2% successful tasks. One
can hypothesise that this is due to people regularly waiting
close to that location and therefore opportunistically using
the robot. The most clicks per task were recorded for lo-
cation ”Kindergarten”, which indeed is a close to an on-site
Kindergarten, probably explained by children being particu-

2An article with the comparisons is to appear, but we in-
tentionally omit it for double blind review.

larly engaged with the robot. It is subject to future research
to look at particular user groups, an aspect currently not
possible to investigate to due ethical guidelines prohibiting
the recording of individual interactions.
The confirmation of hypothesis H2 in Sec. 5.2 leads to

another suggested improvement for the next iteration of the
system. As it is clear that users are preferring certain types
of information at certain places (and possibly even at certain
times), a redesigned interface with an always visible menu-
bar will allow to start an info-terminal task with the most
likely sought after information screen already visible.
Usability. The usability study showed that while users
are capable of interacting successfully with the system, also
indicated by the number of successful info-terminal tasks
identified in the long-term deployment logs, there is also
strong evidence that the interface needs to undergo further
improvement as part of the evaluation-implementation cy-
cle. Admittedly, these findings are rather specific to the
presented system and mostly hint suggested improvements
from users and the facilitator: For instance, there ought to
be an appropriate form of feedback that the click of the user
was registered and the new page is already loading. And due
to the generally low complexity of the info-terminal GUI, its
interface should be redesigned in a way that makes it possi-
ble to provide support for GUI navigation. Environmental
support in form of an additional menu bar reduces demands
on working memory and facilitates recognition (instead of
recall) [2]. These insights will inform the next iteration of
the system development.

7. CONCLUSION
This paper presented a spatio-temporal model in order

to model the when and where of interactions in order to
improve the service provisioning of a mobile robotic info-
terminal, and also analysed the usability for older adults of
the current implementation. The results obtained from a 63
day deployment in a real-world care environment have sta-
tistically confirmed the two hypotheses that (i) modelling
the spatio-temporal dynamics in usage pattern of the info-
terminal yields are more e�cient use over time, and that (ii)
the specific information sought after is indeed dependent on
the location the info-terminal is o↵ered. Furthermore, in-
sights into how users use the system and what they struggle
with in the current implementation have been presented in a
focused usability study, leading to the main conclusion that
the interface indeed needs to more even more simplified, re-
ducing memorisation requirements by the users.
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PROBABILISTIC TIME SERIES OF 
QUALITATIVE STATES

‣ Qualitative Spatial Relations (QSR) are well established 
technique to model human activities

‣ A QSR calculus is a well founded theoretical model

‣ An activity is a sequence of different qualitative states

1. Cohn, A.G. & Renz, J., 2008. Chapter 13 Qualitative Spatial Representation and Reasoning. In F. van Harmelen, V. Lifschitz, & B. Porter, eds. 
Handbook of Knowledge Representation. Elsevier, pp. 551–596.

2. Sridhar, M., Cohn, A.G. & Hogg, D.C., 2010. Unsupervised learning of event classes from video. In Proceedings of the AAAI Conference on 
Artificial Intelligence (AAAI). pp. 1631–1638. Available at: http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/viewFile/1846/2268.

3. Van de Weghe, N. et al., 2006. A qualitative trajectory calculus as a basis for representing moving objects in Geographical Information Systems. 
Control and Cybernetics, 35(1), pp.97–119. Available at: http://control.ibspan.waw.pl:3000/contents/export?filename=Weghe-et-al.pdf.

A BQSR QSR
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QSR SEQUENCES FOR HUMAN-ROBOT 
COLLABORATION AND INTERACTION

‣ idea: predict humans’ 
intention from (partial) 
movement sequences

‣ model the mutual 
movement of human and 
robot using QTC
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QTCC - BY EXAMPLE
QTCC represents the relative motion of two points in a time 
interval with respect to the reference line that connects them 
on a 2D plane.
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3^4 = 81
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REPRESENTING HRSI 
BEHAVIOUR AS QTC-MM

‣ create a Markov Model topology

‣ Discretise Motion of Human and 
Robot into QTC states

‣ Train from long-term experience

S

0000

1 .00

----

00--

0.39

---0

0 .59-0-0

0 .28

--+-

- -+0

0.80

- - + +

0.69 -0+0

0 .20

- 0 + +

0 .24

0 0 + +

0.33

0 .45

0.38

0 .44

0 + + +

0.26

+0- -

0 .55

+ + - -

0.30

0 . 21

0 .20

+ 0 + +

0 . 47

+ + + +

0.44

0.88

0.69

+0 -0

0 . 21

E

0 .44

+ 0 + 0

0 . 27

0 .46

0 .54

0 .32

0 . 21

0 .55

+ + + 0

0 . 21

0 . 21

0 .29

0 . 21

0 .25

0 .54

1 .00
[Dondrup et al.  A computational model of human-robot spatial interactions 

based on a qualitative trajectory calculus. Robotics, 4 (1). 2015]



PLANNING CONSTRAINTS 
FROM PREDICTED QSR



IT WORKS

[Dondrup et al: Qualitative Constraints for Human-aware Robot Navigation using Velocity Costmaps, ICRA 2016. submitted]
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‣ Dora show-cases an integrated planning 
approach to deal with uncertainty, surprise 
and goal-directed behaviour

‣ Deal with the expected, and the unexpected 
change in real world environments

‣ Verify explanations (surprises) 
(inter-)actively by planning more knowledge 
gathering
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‣ Learning routines can help building more 
effective and efficient systems, spectral 
models are very powerful here

‣ Long-term autonomy is a challenge to 
develop common-sense and self-improve 

‣ Change is mostly human-made, and 
humans are the most unpredictable 
entities in an environment, but they can 
explain it
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‣ PostDocs and PhD students in “Long-
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