
!

EXPERIENCES IN SOFTWARE
MANAGEMENT AND CONTINUOUS

INTEGRATION IN A ROS-BASED ROBOTICS
PROJECT

 
Marc Hanheide

Lincoln Centre for Autonomous Systems

2

Spatio-Temporal Representations and Activities
for Cognitive Control in Long-Term Scenarios

http://strands-project.eu

http://strands-project.eu

Exploitation of
structure for

improved
performance

Novel
opportunities

to learn
structure

environment

Long run-
times in
everyday

environments

Robust,
intelligent,

autonomous
behaviour

Objectives

O1: A unified understanding of space over time

O2: Semantic segmentation of space

O3: Understanding human activities

O4: Cognitive control of a robot's activities from spatio-temporal information

O5: Interpreting long-term experience from sparse observations

O6: Integration and validation of a long-lived cognitive robot for dynamic, real-
world tasks

Our overall objective is to enable a mobile robot to exploit a long-term
understanding of space, and the activities that change it, for cognitive

control in real-world environments.

4D

Planning

Observations

Sensing

Aggregation

Modelling

In
cr

ea
sin

g
sp

at
ial

, t
em

po
ra

l,
an

d
se

m
an

tic
 a

bs
tra

ct
io

n

Point Clouds, Images, Laser scans

Metric
Spatio-Temporal (4D)

Maps

3D featuresPeople

Trajectories

Navigation
Planning

2D/3D maps

Human
Movement

Models

Object
instances

Object
categories

Observations

Meta-Room

Human-Object
Activity Models

Navigation
Experience

Robot
Navigation

Models

Task
Scheduling

Exploration
Planning

User
Requirements

Topological
Map

Semantic
Spatio-Temporal

World Model

Skeletons

Sensing

Aggregation

Modelling

Planning

In
cr

ea
sin

g
sp

at
ial

, t
em

po
ra

l,
an

d
se

m
an

tic
 a

bs
tra

ct
io

n

Year MS TSL A% Size Tasks

3 MS8 60 days 30% 2000m3 Security Task 2 (T4.2), Care
Task 1 (T3.6), Care Task 2 (T6.2)

This milestone will see the addition of attention and motivation mechanisms
for the robot based on variations from predictable temporal and spatial

structure in the previously built representations, detecting such variations during
patrols and autonomously examining them. In addition to this, object and

person tracking will be used to allow the system to track objects as they
are manipulated by humans and learn the categories of objects that

people regularly interact with. Navigation will be influenced by the predicted
dynamics of the environment, allowing the robot to reduce travel times by a
significant amount of time and guide humans appropriately (Care Task 2). In

Security Task 2. arrangements of furniture will be detected through a
comparison with existing spatial models, and basic activity models will

be used to predict, and then verify, the movement of people in the robot’s
environment.

Betty at
Transport Systems Catapult,

Milton Keynes, UK

Henry at
Haus der Barmherzigkeit,

Vienna, Austria

HENRY AT THE CARE HOME
Info-Terminal Bellbot

Navigation is a challengeWalking Group

Improve when and
where to offer

interaction with
visitors

occupational
therapy

learn from
experience

PEOPLE LOVE ROBOTS

People are helpful to robots
Topological

Optimal Nav

x2

12

Temperature Measurement
Topological

MongoDB

13

Surface/Worker Checking SOMa
Meta-Rooms
Person Detect

Object Rec.

14

Autonomous Object Learning SOMa
MongoDB

x2

15

Activity Recording SOMa
Person Detect.

QSRLib

16

Exploration SOMa
MongoDB

FreMEn

Exploration
Scheduler

17

Security Care Y3 Care Y2

Deployment 31/5/16 to ? 31/7/16 21/3/16 to 27/5/16 18/5/15 to 17/6/15

Working Hours Weekdays, 6.00 to
17.45

Weekdays days 7.00 to
19.00 Most days 8.00 to 21.00

Distance ~50km 23.41km
Tasks 1890 865

Available Work
Time 529 hours, 13 minutes 252 hours, 54 minutes

Autonomous
Time 209 hours, 13 minutes 135 hours, 20 minutes

A% 39.53% 53.51%

Total System Lifetime (TSL)

Max 25 days, 11:29 hours
(includes 8 days off)

15 days, 5:33 hrs
(includes 5 days off)

2nd best 15 days, 9:30 hours
(includes 4 days off)

Cumulative 55 days, 9:57 hours
(includes 16 days off)

29 days, 5:53 hrs
(includes 10 days off)

no developers/
engineers on-

site

no developers/
engineers on-

site

no developers/
engineers on-

site

ENGINEERING SCIENCE
ENGINEERING

ENGINEERING
SCIENCE

ENGINEERING
enable partners (internal and external) to

use your science / implementation

minimise you support tasks by making
installation and use easy

deploy well-tested and up-to-date systems

Component
Research Core System

Requirements
and

Specifications
Care

System

Security
System

Engineering
Philosophy

OSS, ROS,

reuse, GitHub

22

ROS packages

deployment &
versioning

enable partners (internal and external)
to use your science / implementation

minimise you support tasks by making
installation and use easy

deploy well-tested and up-to-date
systems

Core System

Care
System

Security
SystemSurface Checking

Person Checking
Temperature Measurements

Information Terminal
Bellbot

Walking Group

Guest Greeting

Life-Long Object Learning
Activity Recording

Spatio-Temporal Exploration

Care Team UOL

Security Team BHAM

23

>150 ROS
packages

>50 ROS
packages

>30 developers

Object Rec.

Continuous

Topological

Monitoring

Optimal Nav

Routine

Task Executor Scheduler

Localisation

& Navigation

Executive

Control

Exploration

Perception Meta-Rooms

Person Detect

Trajectories

SOMa

QSRLibMongoDBRepresentation
& Analysis

FreMEn

Object Disc.

View Plan.

24

!

WHAT IS ROS?

synchronous RPC-
stylecommunication over
services
asynchronous streaming of
data over topics
storage of data on a
Parameter Server.

forming a graph of peer-to-peer communicating
components
ROS is a middleware

build system (catkin) for C++
and Python based on CMake

actually not that bad
anymore… but now quite
useful

Object Rec.

Continuous

Topological

Monitoring

Optimal Nav

Routine

Task Executor Scheduler

Localisation

& Navigation

Executive

Control

Exploration

Perception Meta-Rooms

Person Detect

Trajectories

SOMa

QSRLibMongoDBRepresentation
& Analysis

FreMEn

Object Disc.

View Plan.

26

Repositories with
ROS packages

Repositories with
ROS packages

Repositories with
ROS packages

Repositories with
ROS packages

ROS lacks persistency,
MongoDB employed as
generic persistency layer

Point Clouds, Images, Laser scans

Metric
Spatio-Temporal (4D)

Maps

3D featuresPeople

Trajectories

Navigation
Planning

2D/3D maps

Human
Movement

Models

Object
instances

Object
categories

Observations

Meta-Room

Human-Object
Activity Models

Navigation
Experience

Robot
Navigation

Models

Task
Scheduling

Exploration
Planning

User
Requirements

Topological
Map

Semantic
Spatio-Temporal

World Model

Skeletons

Sensing

Aggregation

Modelling

Planning

In
cr

ea
sin

g
sp

at
ial

, t
em

po
ra

l,
an

d
se

m
an

tic
 a

bs
tra

ct
io

n MongoDB (Frongo)

Actions/Services

Topics

THE 10 COMMANDMENTS
(OF SUCCESSFUL INTEGRATION IN STRANDS)

THE 10 COMMANDMENTS
Code has to be packaged up as

a package  
(contain a package.xml)

If it uses ROS, it has to use ROS
Indigo

The sole officially
supported OS is Ubuntu

14.04 64bit

Packages need to declare all their
dependencies using rosdep keys  

(in package.xml)

If it uses ROS, it needs to use
catkin as a build scheme

A maintainer has to be named
(package.xml)

Only code that has passed
continuous integration tests is

allowed to be merged 
(enforced through github)

Unit test (rostest)
should be implemented

Code needs to be hosted on github.com
(normally in strands-project organisation)

Code must only use other
“released” code  

(Debian/Ubuntu binaries)

http://github.com

THE 10 COMMANDMENTS
Code has to be packaged up

as a package  
(contain a package.xml)

If it uses ROS, it has to use
ROS Indigo

The sole officially supported
OS is Ubuntu 14.04 64bit

Packages need to declare all
their dependencies using

rosdep keys  
(in package.xml)

If it uses ROS, it needs to use
catkin as a build scheme

A maintainer has to be named
(package.xml)

WHAT IS A ROS PACKAGE?
contains a package.xml

definition
<?xml version="1.0"?>
<package>
 <name>topological_navigation</name>
 <version>1.0.1</version>
 <description>The topological_navigation package</description>

 <maintainer email=“jpulidofentanes@lincoln.ac.uk">
 Jaime Pulido Fentanes
 </maintainer>

 <author>Jaime Pulido Fentanes</author>

 <license>MIT</license>

 <buildtool_depend>catkin</buildtool_depend>
 <build_depend>rospy</build_depend>
 <build_depend>message_generation</build_depend>
 <!-- many more… -->

 <run_depend>rospy</run_depend>
 <run_depend>move_base</run_depend>
 <!-- many more… -->

 <test_depend>rosunit</test_depend>
 <test_depend>rostest</test_depend>
 <!-- many more… -->

</package>

mostly in ROS, they
use catkin to build

All dependencies
need to be declared

declare who’s
responsible!

Think about license

THE 10 COMMANDMENTS
Code has to be packaged up

as a package  
(contain a package.xml)

If it uses ROS, it has to use
ROS Indigo

The sole officially supported
OS is Ubuntu 14.04 64bit

Packages need to declare all
their dependencies using

rosdep keys  
(in package.xml)

If it uses ROS, it needs to use
catkin as a build scheme

A maintainer has to be named
(package.xml)

THE 10 COMMANDMENTS

Only code that has passed
continuous integration tests is

allowed to be merged 
(enforced through github)

Unit test (rostest) should be
implemented

Code needs to be hosted on
github.com (normally in

strands-project organisation)

Code must only use other
“released” code  

(Debian/Ubuntu binaries)

http://github.com

TEST, TEST, TEST!

modify
code

branch/fork
github

repository

commit to
branch/

fork

open
github pull

request

CI testinginspect
error

Manager
merges
code

Only code that has passed
continuous integration tests is

allowed to be merged 
(enforced through github)

Unit test (rostest) should be
implemented

!

IT’S NOT AS EASY AS
IT MAY SEEM

‣ Build on top of
off-the-shelf ROS
components

‣ long-term
autonomy
requires robust
software

https://github.com/strands-project-releases/strands-releases/wiki

http://github.com/strands-project

CONTINUOUS INTEGRATION

Continuous integration involves integrating early and often, so as to
avoid the pitfalls of "integration hell".

A complementary practice to CI is
that before submitting work, each
programmer must do a complete
build and run (and pass) all unit
tests. Integration tests are usually
run automatically on a CI server
when it detects a new commit.

CI was intended to be used in combination with automated unit
tests written through the practices of test-driven development.

THE STRANDS SOFTWARE
WORKFLOW

modify
code

branch/fork
github

repository

commit to
branch/

fork

open
github pull

request

CI testinginspect
error

Manager
merges
code

!

SIMULATION-BASED ROBOT
TESTINGgithub pull request

jenkins pull request
builder

launch MORSE
simulation

run defined unit
test & record result

https://lcas.lincoln.ac.uk/jenkins/

modify
code

branch/fork
github

repository

commit to
branch/

fork

open
github pull

request

CI testinginspect
error

Manager
merges
code

https://lcas.lincoln.ac.uk/jenkins/

ROBOT TESTING IS ALSO
ABOUT REALITY

!

NOT ONLY FOR STABILITY

‣ github pull request and testing can also be used for automated
benchmarking of systems/components

‣ live:

‣ https://github.com/marc-hanheide/fremen_activity_benchmark

‣ adopt “proper” software development procedures for larger-scale
collaborative projects

https://github.com/marc-hanheide/fremen_activity_benchmark

Reality and mature components still quite  
far from being perfect

Continuous

Topological

Monitored
Localisation

& Navigation

Optimal Nav

Continuous

Topological

Monitored

request help (bumper) request help (nav) backtrack retry

Security 2015 Monitored Navigation Recoveries

0

150

300

450

600

Request help (bumper) Request help (navigation) Backtrack Sleep and retry

219

255

173

134

341

215

369

132

Unsuccessful
Successful

Continuous

Topological

Monitored
Localisation

& Navigation

Optimal Nav

Executive

Control

TOPOLOGICAL EDGE TRAVERSABILITY
MODELLING USING FREMEN

Fig. 4. reconstructed signal for traversability and time along different time periods, top left figure is the action outcomes used for the model building, the
remaining three figures represent the predicted pe(t) state along different time frames, one month (top right), one week (bottom left) and one day (bottom
right). Weekly and monthly periodicities are presented starting from Monday, the day depicted in the bottom left figure is a Thursday.

policies that maximise overall expected success of the LTL
task.

In order to generate a policy at a given time t, we start
by creating an MDP model based on the topological map
T = hV,E,N,nav , PEi. This Navigation MDP at time t

is defined as a tuple Mt = hS, s, A, �i, where: (i) S =
V [{sf} is a finite set of states, corresponding to the
topological nodes, plus a dump state sf , which is reached
after a navigation action failure; (ii) s 2 S is the initial
state, corresponding to the current position of the robot in
the environment; (iii) A = E is a finite set of actions,
corresponding to the edges in the topological map; (iv)
� : S ⇥A⇥ S ! [0, 1] is a probabilistic transition function,
where

P
s02S �(s, a, s0) 2 {0, 1} for all s 2 S, a 2 A. For

vi, vj 2 S, if there is an edge e = (vi, vj) in the topological
map, we define �(vi, e, vj) = pe(t), �(vi, e, sf) = 1� pe(t)
and �(vi, e, v) = 0 for all v 2 S \ {vj , sf}.

In [20], it is shown how, given a co-safe LTL formula
' and a cost function defined over state-action pairs of the
MDP (in our case, such function would be the expected time
to navigate between two nodes in the environment), one can
create policies that minimize the accumulated cost to gener-
ate a trace of the system that satisfies '. Broadly speaking,
LTL allows for the specification of goals that are not simply
reaching a given target node in the environment, but can
be temporally extended goals that require, for example, a
set of nodes to be visited in a given order, or to visit a
given node while avoiding a set of forbidden nodes. The co-
safe fragment of LTL contains all the formulas that can be
satisfied by a finite trace of the system. An example of such
a task is a mail delivery robot that needs to distribute mail to
different rooms in a building, and minimise the time spent
in delivery so it can be available to do other tasks as soon
as possible.

We adapted the approach in [20], and use the PRISM

model checker [21] to generate a policy that maximizes
the probability of satisfying a co-safe LTL formula, i.e., we
generate the policy that fulfils the task while minimizing the
probability of occurrence of a continuous navigation failure.

The fact that we can specify tasks that involve visiting
more than one node in the topological map allows us to
analyse the different choices taken by the robot at different
times. More specifically, for the navigation MDPs obtained
from the topological map depicted in Fig. 2, we analyse the
policies obtained for formula (F v1_F v14), i.e., “visit either
node v1 or node v14”. This task allows the policy to choose
which node to try to visit first, taking into account the current
position of the robot, and the traversability probabilities for
the edges in the topological map. Furthermore, it is a type
of task that is common for mobile robots. For example, a
data gathering robot might want to unload its data, and in
nodes v1 and v14 there are data unloading stations it can use.
Thus, to increase the robustness of the system, we want the
robot to choose the station it can navigate to with the lowest
probability of failure.

In Table III, we show the probabilities of being able
to execute the task, starting on v5, without any navigation
failures, for different times of day. As expected, it is possible
to see that during the times where it is more probable
for people to be present in the office, the probability of
fulfilling the task without navigation failures is higher. This
is because the robot asks for human intervention when he has
problems navigating, and the presence of people to help it
increases the probability of fulfilling the navigation task (we
do not consider these interactions with humans as failures).
Furthermore, we also analyse the optimal action for v5 at
different times of day. This illustrates the choice the robot
makes on which area of the environment to visit when at
v5. We depict the choice of visiting v14 in light gray, and
the choice of visiting v1 in dark gray. This choice is heavily

J. Pulido Fentanes, B. Lacerda, T. Krajník, N. Hawes, and M. Hanheide.
Now or later? predicting and maximising success of navigation actions
from long-term experience. In ICRA, 2015.

TOPOLOGICAL EDGE
DURATION PREDICTION

Mean
FreMEn

Mean
FreMEn

 16

 18

 20

 22

 24

 26

 28

 0 5 10 15 20 25

E
st

im
at

io
n

 e
rr

o
r

[%
]

Deployment duration [days]

Security scenario − G4S

 16

 18

 20

 22

 24

 26

 28

 0 5 10 15 20 25

E
st

im
at

io
n

 e
rr

o
r

[%
]

Deployment duration [days]

Care scenario − AAF

TOPOLOGICAL EDGE
DURATION PREDICTION

Mean
FreMEn

Mean
FreMEn

 16

 18

 20

 22

 24

 26

 28

 0 5 10 15 20 25

E
st

im
at

io
n

 e
rr

o
r

[%
]

Deployment duration [days]

Security scenario − G4S

 16

 18

 20

 22

 24

 26

 28

 0 5 10 15 20 25
E

st
im

at
io

n
 e

rr
o

r
[%

]

Deployment duration [days]

Care scenario − AAF

W1 W2

W3

0.9

action goto W2 from W1

0.1

cost = 54

B. Lacerda, D. Parker, and N. Hawes. Optimal and Dynamic Planning for Markov
Decision Processes with Co-Safe LTL Specifications. In: IROS 2014.

x2

50

GETTING IT OUT THERE

DEPLOYMENT ISSUES AND
SOLUTIONS

INSTALLATION HELL

INSTALLATION HELL

Dependencies are a
mess Shall each member in

the project spend days
to get a working system?

Why can you install an Ubuntu
system in 30 minutes (>1000
packages) but not a simple

robot system?

Dependencies are a
mess

+ Versioning Problems

But this has been solved => Linux Distributions

Object Rec.

Continuous

Topological

Monitoring

Optimal Nav

Routine

Task Executor Scheduler

Localisation

& Navigation

Executive

Control

Exploration

Perception Meta-Rooms

Person Detect

Trajectories

SOMa

QSRLibMongoDBRepresentation
& Analysis

FreMEn

All O
pen Source

& Binary

Released

Object Disc.

View Plan.

55

https://github.com/strands-project/buildfarm

•ROS has a build farm (build on top of
Debian deployment principles)

•STRANDS has implemented their own
re-using OSRF’s implementation

•everybody can submit their packages to
ROS: https://github.com/ros/rosdistro/
blob/master/CONTRIBUTING.md

•you get binary Ubuntu packages

https://github.com/strands-project/buildfarm
https://github.com/ros/rosdistro/blob/master/CONTRIBUTING.md

RECOMMENDATION
Write your own

commandments (or adopt
some of mine)!

Get people to commit to
ONE OS/ROS/HW

combination

Adopt established software
engineering principles (pull
requests, code reviews, CI)

Make use of the deployment
toolchain (your own or OSRF

ROS toolchain)

Use Python were possible
Always question researchers’

software engineering decisions
;-)

RECOMMENDATION
Write your own

commandments (or adopt some
of mine)!

Get people to commit to ONE
OS/ROS/HW combination

Adopt established software
engineering principles (pull
requests, code reviews, CI)

Make use of the deployment
toolchain (your own or OSRF

ROS toolchain)
Use Python were possible

Always questions researchers’
software engineering

decisions ;-)

Write your own
commandments (or adopt some

of mine)!
Get people to commit to ONE

OS/ROS/HW combination

Adopt established software
engineering principles (pull
requests, code reviews, CI)

Make use of the deployment
toolchain (your own or OSRF

ROS toolchain)
Use Python were possible

Always questions researchers’
software engineering

decisions ;-)

