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SHARED AUTONOMY
Shared Autonomy 

‣ an overarching concept
‣ “shared control”
‣ anything between 

(remote-)controlled and fully 
autonomous

Symbiotic Autonomy 

‣ should be for mutual benefit
‣ human and robot helping 

each other

“[…] In practice, […] automation is 
not perfectly reliable and is usually 
not designed to reach the defined 

objectives alone, human supervision is 
still mandatory” (Mercier et al, 2008)

Joydeep Biswas & Manuela Veloso, CMU



ADAPTIVE AUTONOMY?
Shared Autonomy 

‣ an overarching concept
‣ “shared control”
‣ anything between 

(remote-)controlled and fully 
autonomous

Symbiotic Autonomy 

‣ should be for mutual benefit
‣ human and robot helping 

each other

Adaptive Autonomy 

‣ improve autonomous 
behaviour from past 
experience/human autonomy

‣ adjust levels of autonomy

action 
execution  

Autonomy (3)

goal selection  
Autonomy (1)



Robust, 
intelligent, 

autonomous 
behaviour

Long run-
times in 
everyday 

environments

Novel 
opportunities 

to learn 
structure

Exploitation of 
structure for 

improved 
performance

Shared Autonomy 

‣ an overarching concept
‣ “shared control”
‣ anything between 

(remote-)controlled and fully 
autonomous

Symbiotic Autonomy 

‣ should be for mutual benefit
‣ human and robot helping each 

other

Adaptive Autonomy 

‣ improve autonomous 
behaviour from past 
experience/human autonomy

‣ adjust levels of autonomy
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Exploitation of 
structure for 

improved 
performance

Novel 
opportunities 

to learn 
structure

Long run-
times in 
everyday 

environments

Robust, 
intelligent, 

autonomous 
behaviour

running for weeks

learn how the world changes and what users want
exploration!

Do what 

users want in 

the way the 

want it



Year MS TSL A% Size Tasks 

3 MS8 60 days 30% 2000m3 Security Task 2 (T4.2), Care 
Task 1 (T3.6), Care Task 2 (T6.2) 

This milestone will see the addition of attention and motivation mechanisms 
for the robot based on variations from predictable temporal and spatial 

structure in the previously built representations, detecting such variations during 
patrols and autonomously examining them. In addition to this, object and 

person tracking will be used to allow the system to track objects as they 
are manipulated by humans and learn the categories of objects that 

people regularly interact with. Navigation will be influenced by the predicted 
dynamics of the environment, allowing the robot to reduce travel times by a 
significant amount of time and guide humans appropriately (Care Task 2). In 

Security Task 2. arrangements of furniture will be detected through a 
comparison with existing spatial models, and basic activity models will 

be used to predict, and then verify, the movement of people in the robot’s 
environment. 
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LONG-TERM AUTONOMY 
IN SECURITY

Symbiotic Autonomy 

‣ should be for mutual benefit
‣ human and robot helping 

each other

“[…] In practice, […] automation is 
not perfectly reliable and is usually 
not designed to reach the defined 

objectives alone, human supervision is 
still mandatory” (Mercier et al, 2008)



PEOPLE LOVE ROBOTS



SURFACE/WORKER CHECKING
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PEOPLE ARE HELPFUL TO 
ROBOTS

Symbiotic Autonomy 

‣ should be for mutual benefit
‣ human and robot helping 

each other

Continuous
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Fig. 4. reconstructed signal for traversability and time along different time periods, top left figure is the action outcomes used for the model building, the
remaining three figures represent the predicted pe(t) state along different time frames, one month (top right), one week (bottom left) and one day (bottom
right). Weekly and monthly periodicities are presented starting from Monday, the day depicted in the bottom left figure is a Thursday.

policies that maximise overall expected success of the LTL
task.

In order to generate a policy at a given time t, we start
by creating an MDP model based on the topological map
T = hV,E,N,nav , PEi. This Navigation MDP at time t

is defined as a tuple Mt = hS, s, A, �i, where: (i) S =
V [ {sf} is a finite set of states, corresponding to the
topological nodes, plus a dump state sf , which is reached
after a navigation action failure; (ii) s 2 S is the initial
state, corresponding to the current position of the robot in
the environment; (iii) A = E is a finite set of actions,
corresponding to the edges in the topological map; (iv)
� : S ⇥A⇥ S ! [0, 1] is a probabilistic transition function,
where

P
s02S �(s, a, s0) 2 {0, 1} for all s 2 S, a 2 A. For

vi, vj 2 S, if there is an edge e = (vi, vj) in the topological
map, we define �(vi, e, vj) = pe(t), �(vi, e, sf ) = 1� pe(t)
and �(vi, e, v) = 0 for all v 2 S \ {vj , sf}.

In [20], it is shown how, given a co-safe LTL formula
' and a cost function defined over state-action pairs of the
MDP (in our case, such function would be the expected time
to navigate between two nodes in the environment), one can
create policies that minimize the accumulated cost to gener-
ate a trace of the system that satisfies '. Broadly speaking,
LTL allows for the specification of goals that are not simply
reaching a given target node in the environment, but can
be temporally extended goals that require, for example, a
set of nodes to be visited in a given order, or to visit a
given node while avoiding a set of forbidden nodes. The co-
safe fragment of LTL contains all the formulas that can be
satisfied by a finite trace of the system. An example of such
a task is a mail delivery robot that needs to distribute mail to
different rooms in a building, and minimise the time spent
in delivery so it can be available to do other tasks as soon
as possible.

We adapted the approach in [20], and use the PRISM

model checker [21] to generate a policy that maximizes
the probability of satisfying a co-safe LTL formula, i.e., we
generate the policy that fulfils the task while minimizing the
probability of occurrence of a continuous navigation failure.

The fact that we can specify tasks that involve visiting
more than one node in the topological map allows us to
analyse the different choices taken by the robot at different
times. More specifically, for the navigation MDPs obtained
from the topological map depicted in Fig. 2, we analyse the
policies obtained for formula (F v1_F v14), i.e., “visit either
node v1 or node v14”. This task allows the policy to choose
which node to try to visit first, taking into account the current
position of the robot, and the traversability probabilities for
the edges in the topological map. Furthermore, it is a type
of task that is common for mobile robots. For example, a
data gathering robot might want to unload its data, and in
nodes v1 and v14 there are data unloading stations it can use.
Thus, to increase the robustness of the system, we want the
robot to choose the station it can navigate to with the lowest
probability of failure.

In Table III, we show the probabilities of being able
to execute the task, starting on v5, without any navigation
failures, for different times of day. As expected, it is possible
to see that during the times where it is more probable
for people to be present in the office, the probability of
fulfilling the task without navigation failures is higher. This
is because the robot asks for human intervention when he has
problems navigating, and the presence of people to help it
increases the probability of fulfilling the navigation task (we
do not consider these interactions with humans as failures).
Furthermore, we also analyse the optimal action for v5 at
different times of day. This illustrates the choice the robot
makes on which area of the environment to visit when at
v5. We depict the choice of visiting v14 in light gray, and
the choice of visiting v1 in dark gray. This choice is heavily

J. Pulido Fentanes, B. Lacerda, T. Krajník, N. Hawes, and M. Hanheide. 
Now or later? predicting and maximising success of navigation actions 
from long-term experience. In ICRA, 2015.
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0.9
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cost = 54

B. Lacerda, D. Parker, and N. Hawes. Optimal and Dynamic Planning for Markov 
Decision Processes with Co-Safe LTL Specifications. In: IROS 2014.
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LONG-TERM AUTONOMY 
IN CARE HOME

Adaptive Autonomy



Haus der Barmherzigkeit, Vienna, Austria 



HENRY AT THE CARE HOME
Info-Terminal Bellbot

Navigation is a challenge

Improve when and 
where to offer

occupational 
therapy

learn from 
experience

Walking Group



Care Y3 Care Y2

Deployment 21/3/16 to 27/5/16 18/5/15 to 17/6/15

Working Hours Weekdays days 7.00 to 19.00 Most days 8.00 to 21.00

Distance ~50km 23.41km
Tasks 1890 865

Available Work Time 529 hours, 13 minutes 252 hours, 54 minutes

Autonomous Time 209 hours, 13 minutes 135 hours, 20 minutes

A% 39.53% 53.51%

Total System Lifetime (TSL)

Max 25 days, 11:29 hours 
(includes 8 days off)

15 days, 5:33 hrs  
(includes 5 days off)

2nd best 15 days, 9:30 hours 
(includes 4 days off)

Cumulative 55 days, 9:57 hours 
(includes 16 days off)

29 days, 5:53 hrs  
(includes 10 days off)

no developers/
engineers on-

site

no developers/
engineers on-

site



initially determined fully 
autonomous, exploring & 

exploiting



EMPOWERING END-USERS

staff can submit on-
demand and scheduled 

tasks (since y2)



SCHEDULING TASKS

Robot” architecture [5] running on a server. This system
manages incoming tasks from a web-based user interface,
schedules tasks across several robots [6], and keeps track
of task execution. The robots autonomously navigate on a
topological map [7], using Dijkstra’s algorithm to find a
path on the topological graph. Each robot performs given
tasks, provides an on-board user interface and speech based
“interruptible autonomy” [8] in order to modify, cancel
or add a task. As of November 2014, the four CoBots
have jointly travelled more than 1,000 km autonomously. A
similar centralised system architecture is used by the mobile
service robot Tangy [9] which performs a sequence of tasks
rather than a schedule. A sequence differs from a schedule as
exact start times for tasks are not specified, only their order.

In contrast to the previous architecture, robots Rin and
Rout use a constraint network [10]. This network is con-
tinuously modified by an executor, a monitor and a planner
in order to create configuration plans which specify causal,
temporal, resources and information dependencies between
individual actions. This general approach allows Rin and
Rout to perform a variety of tasks.

Neither Tangy, nor Rin and Rout, are aimed at long-
term behaviour. On the contrary, Willow Garage programmed
a PR2 robot to perform an uninterrupted, 13 day run in
an office environment [11]. The robot had only a simple
executive framework which queued tasks for execution, but
did use a novel failure recovery mechanism, including remote
human teleoperation, to increase its robustness.

Finally, the CRAM software toolbox [12] provides a
task executive that allows for the design, implementation,
and deployment of autonomous robots that perform every-
day manipulation activities, focussing on the integration of
knowledge into the control process.

Contrary to our approach, none of the these works is able
to cope with the set of questions we presented before in an
integrated manner.

III. CONTROL FRAMEWORK

Our control framework, depicted in Fig. 2, runs on a
single mobile robot and assumes the presence of navigation
controllers which allows it to autonomously navigate on
a topological map. We also assume the presence of other
subsystems which are able to perform the tasks required of
the robot (e.g. checking for the presence of people). A task
is the main unit of behaviour within our cognitive control
framework. It represents an instance of a behaviour that the
robot should carry out. We refer to a single task by ! with
numeric subscript i, for example !1. Its properties – listed
below – are then referred by the same subscript.

• time properties:
– a time window hr

i

, d

i

i, where r

i

is a release date
(the earliest time instant when a task can start), and
d

i

is a deadline (the latest time instant when a task
can finish);

– a processing time p

i

, which represents the expected
duration of the task;

robot's
other
subsystems

navigation
controller

task
executor

and
monitor

navigation
planning
framework

scheduler

Control framework

Fig. 2: An architecture of the proposed control framework,
see Sec. III for an explanation.

– a start time of execution s

i

, to be defined by the
scheduling procedure;

– an end time of execution e

i

, defined as e
i

= s

i

+p

i

.
• a priority  

i

;
• optional start ls

i

and end l

e

i

locations;
• an activity to perform which has:

– a name, for example “check the fire extinguisher”;
– a predefined sequence A

!i = (a
i1 , . . . , aim) of ac-

tions how to fulfil the task. Actions are indivisible;
– a boolean flag “interruptible” signalling if the task

can be interrupted.
Our framework supports two types of task: on-demand

tasks and standard tasks. A standard task should be added to
the schedule and executed within its time constraints. An on-
demand task should be executed immediately, thus the time
window is not set for it. Tasks can be added to the control
framework by humans via a web interface (e.g. requesting the
robot to perform a task at a particular time); by components
of the robot’s other subsystems (e.g. requesting that a part
of the map is explored at some time in the future); and by
routine scripts which specify fixed sets of tasks for the robot
to perform every day.

In order to address Question 4 (Q4), the executor maintains
a set of tasks to be executed S = {!

j

, . . . ,!

l

} and it
generates and executes a schedule Ŝ for these tasks. The
execution of an individual task is performed by a finite
state machine which triggers navigation to the task’s start
location l

s

i

and then execution of actions A

!i . It also uses
internal feedback signals x

l

, x

a

from the navigation and
action subsystems in order to react to failures (Q5).

Our framework is focused on a single robot and, based on
this, we assume that tasks cannot be interleaved or performed
in parallel. The robot is therefore the only resource for its
scheduler to manage (Q1). The scheduler’s input is the set
S of tasks, and the output is a schedule Ŝ , which is an
ordering of S , along with the corresponding start times s

i

and end times e

i

for each task !

i

2 S . The scheduler
creates Ŝ such that the overall waiting time for task execution
is minimised. Moreover, a valid schedule ensures that a
robot has enough time to travel between the end location
l

e

i

of each finished task and the start location l

s

i

of the

Mudrová, L., Lacerda, B. & Hawes, N., 2015. An Integrated Control Framework for Long-Term 
Autonomy in Mobile Service Robots. In ECMR.

staff can submit on-
demand and scheduled 

tasks (since y2)
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WALKING GROUP

y2: fully autonomous

Goal: visual and acoustical 
stimulation, entertainment during 
waiting & resting, source of 
motivation and group 
coherences  
Contents: picture, video and 
music gallery



WALKING GROUP

y2: fully autonomous

Goal: visual and acoustical 
stimulation, entertainment during 
waiting & resting, source of 
motivation and group 
coherences  
Contents: picture, video and 
music gallery

Therapists  
• Positive attitude 

„cool“, „exciting“  

Issues 
• Navigation 
• […] 
• Lacking flexibility

Problems with Participants 
• Health issues 
• Participants going astray  

Too low locus 
of control?



WALKING GROUP

y2: fully autonomous

Medians of subjective ratings of therapists and observers across 
slow and fast patient groups for:  
	 overall atmosphere/mood (0=aggrieved, 100=cheerful),  
	 motivation (0=demotivated, 100=very motivated),  
	 group coherence (0=loose, 100=strong) 



WALKING GROUP

y2: fully autonomous

y3: more control requested, quote 
“too autonomous”

‣ facilitate human 
creativity

‣ spontaneous change of 
plans

‣ more responsive to 
patients



WALKING GROUP

y2: fully autonomous

y3: more control requested, 
quote “too autonomous”

Result: higher acceptance 
by therapists (now 

expressing they want to 
use it again)



LEARNING THE WHEN AND 
WHERE OF INFO-TERMINAL

Feuerlöscher

12: Chapel

68: Lifts Kindergarten
26: Frisoer2

Frisoer

Cafeteria

8: entry ambulance

15: waiting zone

4: lifts

57: info board

111: lifts

35: reading

ChargingPoint

70%30%

Successful Info-terminals %

Clicks per interaction %

2.07 6.67

human’s intentions 
vary, but we might be 

able to exploit 
regularities in the 

changes?



!

ANTICIPATING USERS’ TASKS
‣ Model probability of 

interaction “success” as 
periodic probability 
distribution

‣ Exploit prediction to 
improve where the service 
is offered when

‣ Explore actively to learn

‣ greedy 50/50 exploration/
exploitation

Fig. 4. reconstructed signal for traversability and time along different time periods, top left figure is the action outcomes used for the model building, the
remaining three figures represent the predicted pe(t) state along different time frames, one month (top right), one week (bottom left) and one day (bottom
right). Weekly and monthly periodicities are presented starting from Monday, the day depicted in the bottom left figure is a Thursday.

policies that maximise overall expected success of the LTL
task.

In order to generate a policy at a given time t, we start
by creating an MDP model based on the topological map
T = hV,E,N,nav , PEi. This Navigation MDP at time t

is defined as a tuple Mt = hS, s, A, �i, where: (i) S =
V [ {sf} is a finite set of states, corresponding to the
topological nodes, plus a dump state sf , which is reached
after a navigation action failure; (ii) s 2 S is the initial
state, corresponding to the current position of the robot in
the environment; (iii) A = E is a finite set of actions,
corresponding to the edges in the topological map; (iv)
� : S ⇥A⇥ S ! [0, 1] is a probabilistic transition function,
where

P
s02S �(s, a, s0) 2 {0, 1} for all s 2 S, a 2 A. For

vi, vj 2 S, if there is an edge e = (vi, vj) in the topological
map, we define �(vi, e, vj) = pe(t), �(vi, e, sf ) = 1� pe(t)
and �(vi, e, v) = 0 for all v 2 S \ {vj , sf}.

In [20], it is shown how, given a co-safe LTL formula
' and a cost function defined over state-action pairs of the
MDP (in our case, such function would be the expected time
to navigate between two nodes in the environment), one can
create policies that minimize the accumulated cost to gener-
ate a trace of the system that satisfies '. Broadly speaking,
LTL allows for the specification of goals that are not simply
reaching a given target node in the environment, but can
be temporally extended goals that require, for example, a
set of nodes to be visited in a given order, or to visit a
given node while avoiding a set of forbidden nodes. The co-
safe fragment of LTL contains all the formulas that can be
satisfied by a finite trace of the system. An example of such
a task is a mail delivery robot that needs to distribute mail to
different rooms in a building, and minimise the time spent
in delivery so it can be available to do other tasks as soon
as possible.

We adapted the approach in [20], and use the PRISM

model checker [21] to generate a policy that maximizes
the probability of satisfying a co-safe LTL formula, i.e., we
generate the policy that fulfils the task while minimizing the
probability of occurrence of a continuous navigation failure.

The fact that we can specify tasks that involve visiting
more than one node in the topological map allows us to
analyse the different choices taken by the robot at different
times. More specifically, for the navigation MDPs obtained
from the topological map depicted in Fig. 2, we analyse the
policies obtained for formula (F v1_F v14), i.e., “visit either
node v1 or node v14”. This task allows the policy to choose
which node to try to visit first, taking into account the current
position of the robot, and the traversability probabilities for
the edges in the topological map. Furthermore, it is a type
of task that is common for mobile robots. For example, a
data gathering robot might want to unload its data, and in
nodes v1 and v14 there are data unloading stations it can use.
Thus, to increase the robustness of the system, we want the
robot to choose the station it can navigate to with the lowest
probability of failure.

In Table III, we show the probabilities of being able
to execute the task, starting on v5, without any navigation
failures, for different times of day. As expected, it is possible
to see that during the times where it is more probable
for people to be present in the office, the probability of
fulfilling the task without navigation failures is higher. This
is because the robot asks for human intervention when he has
problems navigating, and the presence of people to help it
increases the probability of fulfilling the navigation task (we
do not consider these interactions with humans as failures).
Furthermore, we also analyse the optimal action for v5 at
different times of day. This illustrates the choice the robot
makes on which area of the environment to visit when at
v5. We depict the choice of visiting v14 in light gray, and
the choice of visiting v1 in dark gray. This choice is heavily
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Menu 25 61 23 34 43 48 34 36 69 49 23 37 7 489
Weather 29 37 28 34 35 44 36 28 45 33 10 20 7 386

News 21 33 24 34 31 29 14 22 36 29 13 41 3 330
Photo 165 127 96 128 79 110 111 110 170 62 71 69 10 1308
SUM 240 258 171 230 188 231 195 196 320 173 117 167 27 2513

Table 1: Contingency Table of information screens requested in dependency of the 13 locations chosen for

this analysis. The names of the locations (in columns) correspond to the ones in Fig. 3. ”ChargingPoint” has

been omitted from this study.

6. DISCUSSION
Info-terminal scheduling. While H1 is confirmed and
the robot gradually learned the spatio-temporal dynamics
of people’s usage patterns and adjusted its schedule to im-
prove the usage of the info-terminal, the schedule building
strategy was rather simple. First, the strategy ignored trav-
elling times between the individual locations, so the schedule
sometimes produced sequences of location visits, where the
robot spend more time navigating than o↵ering the info-
terminal service. Moreover, the exploration/exploitation
dilemma was addressed not by using two di↵erent strate-
gies, but simply by combining the exploration and exploita-
tion utility in a single function (3) with an arbitrarily chosen
exploration/exploitation ratio ✏. One could argue not only
that the utility function is suboptimal for this task, but also
that exploitation requires a di↵erent, more aggressive strat-
egy than the Monte-Carlo scheduling scheme used for explo-
ration. Since there are multiple options how to address the
service scheduling problem and verification of each option
would take at least 4 weeks, we already used the temporal
models learned by the robot in the deployment to create
a dynamic simulation of the deployment environment. Us-
ing this simulator, we tested over 50 di↵erent scheduling
strategies, service utility functions, path planning policies
and their settings. These simulations indicate 2 that a more
complex utility function in combination with path planning
that takes into account the distance between the locations
can increase the number of potential interactions by more
than 100%. Thus, for the next deployment of the robot, we
plan to implement these improvements and compare them
to the original scheduling method.
Usage Patterns. As can also be seen in Fig. 3 there is
not only a dynamic model, but also a static trend indicating
that some locations are more popular than others. Of course,
this static trend is also represented in the spatio-temporal
model as µ for each location (see eq. 1), but looking at it a
bit closer can give us some indication of the general use of
the info-terminal. The most successful location (in terms of
number of info-terminal provisions that lead to actual inter-
actions with users) is ”lifts”with 68.2% successful tasks. One
can hypothesise that this is due to people regularly waiting
close to that location and therefore opportunistically using
the robot. The most clicks per task were recorded for lo-
cation ”Kindergarten”, which indeed is a close to an on-site
Kindergarten, probably explained by children being particu-

2An article with the comparisons is to appear, but we in-
tentionally omit it for double blind review.

larly engaged with the robot. It is subject to future research
to look at particular user groups, an aspect currently not
possible to investigate to due ethical guidelines prohibiting
the recording of individual interactions.
The confirmation of hypothesis H2 in Sec. 5.2 leads to

another suggested improvement for the next iteration of the
system. As it is clear that users are preferring certain types
of information at certain places (and possibly even at certain
times), a redesigned interface with an always visible menu-
bar will allow to start an info-terminal task with the most
likely sought after information screen already visible.
Usability. The usability study showed that while users
are capable of interacting successfully with the system, also
indicated by the number of successful info-terminal tasks
identified in the long-term deployment logs, there is also
strong evidence that the interface needs to undergo further
improvement as part of the evaluation-implementation cy-
cle. Admittedly, these findings are rather specific to the
presented system and mostly hint suggested improvements
from users and the facilitator: For instance, there ought to
be an appropriate form of feedback that the click of the user
was registered and the new page is already loading. And due
to the generally low complexity of the info-terminal GUI, its
interface should be redesigned in a way that makes it possi-
ble to provide support for GUI navigation. Environmental
support in form of an additional menu bar reduces demands
on working memory and facilitates recognition (instead of
recall) [2]. These insights will inform the next iteration of
the system development.

7. CONCLUSION
This paper presented a spatio-temporal model in order

to model the when and where of interactions in order to
improve the service provisioning of a mobile robotic info-
terminal, and also analysed the usability for older adults of
the current implementation. The results obtained from a 63
day deployment in a real-world care environment have sta-
tistically confirmed the two hypotheses that (i) modelling
the spatio-temporal dynamics in usage pattern of the info-
terminal yields are more e�cient use over time, and that (ii)
the specific information sought after is indeed dependent on
the location the info-terminal is o↵ered. Furthermore, in-
sights into how users use the system and what they struggle
with in the current implementation have been presented in a
focused usability study, leading to the main conclusion that
the interface indeed needs to more even more simplified, re-
ducing memorisation requirements by the users.
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