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The world is not static!

But it’s full of routines  
(nearly periodic processes)
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A ROBOT PATROLLING  
(ONE WEEK)
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WHY AND HOW TO MODEL 
ROUTINES?

‣ Why:

‣ better localisation

‣ better planning

‣ detect deviations

‣ predict the future  

‣ How:

‣ (binary) states 
  

‣ derive spectral model using FT  

‣ keep the most prominent S
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now extended to 
real-valued states 
and non-uniform 

sampling

Indeed, our current 
model also takes 

recency into 
account
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FREQUENCY MAP 
ENHANCEMENT
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STATES?
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VISUAL TOPOLOGICAL 
LOCALISATION

[“Long-Term Topological Localisation for Service Robots in Dynamic Environments using Spectral Maps" that will be presented 
at IEEE/RSJ International Conference on Intelligent Robots and Systems 2014]
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A FEW RESULTS

[Krajnic et al “Long-Term Topological Localisation for Service Robots in Dynamic Environments using Spectral Maps”, IEEE/RSJ 
International Conference on Intelligent Robots and Systems 2014]

1 week prediction 3 months prediction
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PREDICT 2D GRID MAPS
‣ better accuracy and robustness 

in localisation

Fig. 4: Overview and 2D occupancy grid of the Witham
Wharf office.

quality of the built maps, we quantified the amount of noise
in the maps.

A. Localisation accuracy

To evaluate the accuracy of the robot self-localization,
we installed an independent localisation infrastructure at
the Witham Wharf office. The infrastructure consisted of
two ceiling-mounted fish eye Kodak PixPro SP360 cameras,
a large circular marker on top of the robot and another
set of markers close to the robot’s charging station. While
the marker on the robot’s top was used to determine its
x and y position, the markers positioned at the charging
station area allowed for precise, independent estimation of
the robot heading. Detection and position estimation of
the markers, localisation system calibration and coordinate
system setup was based on a freely-available, open-source
method presented in [24]. To ensure millimetre accuracy of
the localisation system, we had to use rather large markers
as suggested by the mathematical model of the system [24],
see Figure 5. We selected approximately 2000 images in 20
different image sequences captured by the overhead cameras
and established the positions of the robot. To avoid potential
accuracy drop-off caused by the use of the wide-angle lens
cameras, the selected images have the robot position close
to the center of the image.

The individual sequences captured the movement of the
robot through a 1.5 m wide corridor outlined by eight storage
cupboards. These cupboards are used by the research staff of
the office and some of the cupboard doors are typically open
during the day and closed at night. The cupboards are 0.5 m
deep, so when a cupboard door is left open, the corridor
appears to be 2 m instead of 1.5 m wide and its center appears
to be offset by 0.25 m aside. Thus, when moving through this
corridor, the discrepancy of the 2D map with the perceived

Fig. 5: Example image captured by the ceiling-mounted
camera of the external localisation system. The position of
the circular marker on top of the robot is used as a ground
truth to determine the accuracy of the robot’s localization
system.

environment state might negatively affect the accuracy of
robot self-localization.

In our case, the 20 m range of the robot laser rangefinder
ensures that it will almost always perceive areas that did not
change, which should keep the position estimate accurate.
However, if the range of the laser sensor was shorter, e.g.
when using a Hokyo URG04, then the localization accuracy
would be affected severely.

To estimate the impact of the environment change and sen-
sor range on the localization precision, we processed laser,
odometry and ground truth data from 20 different passes of
the robot through the monitored corridor. To emulate the
limited range of the laser rangefinder, we trimmed the laser
data at different lengths. Using the trimmed data from 20
different runs, we performed standard ROS-based AMCL
localisation on the ‘static’, ‘averaged’ and ‘predicted’ 2d
maps and compared the robot positions to the ground truth
obtained by the overhead cameras. The results shown in
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Fig. 6: Localization error for different ranges of the laser
scanner and different types of the maps. Predicting a map
for a particular time improves localization accuracy, although
the improvement is only marginal for long-range sensors.

Figure 6 indicate that use of the time-specific, predicted maps

results improves the localization precision in a significant
way if the range of the laser rangefinder is lower than the
overall map size. If the rangefinder provides a complete
overview of the operational environment, the reduction of the
position estimation error is only marginal. However, a small
difference in localization precision can have a significant
impact on the efficiency of the robot navigation and quality
of the constructed maps.

B. Navigation efficiency

To evaluate the navigation efficiency, we processed naviga-
tion statistics of 60 different patrol runs. During each patrol,
the robot undocked from its charging station, visited several
different locations in the office (see Figure 2) and returned
back to recharge. The data from each patrol run contains
the robot’s average speed and the number of events where
standard navigation behaviour failed and the robot had to
perform custom recovery behaviours in order to proceed with
its patrol. The gathered navigation statistics were divided into
three groups of 20 patrols each. The first group contained
patrols that were happening during weekends, where the
amount of environment changes in the office is more likely to
be low. The second group contained patrols from weekday
afternoons, where the robot was using an ‘averaged’ map,
which slowly adapts to the observed change. The third group
contained patrols from weekday afternoons, where the robot
was using a ‘predicted’, time specific map. Table I indicates

TABLE I: Navigation statistics

Environment Static Changing
Map Static Static Predicted

Average speed [ms ] 0.21 0.15 0.18
Recovery events [-] 1 21 12

that in a static environment, the robot could navigate effi-
ciently even when using a static map, but as soon as the
environment began to change, the navigation efficiency was
affected in a negative way. However, the negative effect of the
changes was slightly lowered through the use of the proposed
map, which represents the environment changes in an explicit
way.

C. Map quality

This experiment evaluates the effect of an anomalous map
detection mechanism. This mechanism verifies whether a
newly created map conforms with the representation that was
gathered so far, which allows to reject corrupt or otherwise
incorrect maps. To verify the utility of the anomaly detection
mechanism, we replayed laser and odometry data from 100
consecutive patrols with the anomaly detection component
being deactivated and compared the resulting spatio-temporal
representation with the one built while the anomaly detection
was used to rejectd potentially corrupted maps. Figure 7
shows the amount of changes detected in the consecutively
created maps. The figure shows that at a certain point (run
36), integration of an incorrect map corrupts the FreMEn

grid, which breaks the map update process. However, the
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Fig. 7: Effect of the anomalous map detection and rejection.
The peak in the graph indicates mapping system failure and
consequent discrepancy of the individual maps. The two
maps show the resulting models with and without anomaly
rejection.

anomalous map rejection mechanism prevents this situation
and the map update process continues to produce a faithful
2D environment model.

VI. CONCLUSION

We presented an approach for mobile robot life-long map-
ping and persistent localization in changing environments.
First, we show that the ability to update the environment
model does not require introduction of custom modules to
the ROS navigation stack. Instead, the navigation stack can
be augmented by the gmapping module that builds a new
map every time the robot navigates around its operational en-
vironment. To ensure that the new map is consistent with the
previously built model, we propose to use the AMCL module
position estimation as virtual odometry for gmapping. Sec-
ond, we demonstrate that maps of the individual navigation
runs can be integrated into a spatio-temporal model that
captures the persistency and periodicity of the environment
changes. This spatio-temporal environment representation,
which explicitly models the environment dynamics, is used
to predict time-specific maps, which serve our robot both for
localization, path-planning and navigation.

Our experimental evaluation, based on data gathered over
the course of several weeks, shows that using the model’s
predictive capabilities improves the accuracy of robot local-
ization and increases the efficiency of the robot navigation.
The tests indicate that the proposed environment model is
especially beneficial for mobile robots that do not have a
complete overview of their environment, e.g. due to the
limited sensor range such as when operating outdoors or in
large warehouses.

While encouraging, the experiments were too short to
demonstrate that the proposed method enables life-long
autonomous operation in changing environments. Therefore,

IROS 2016:
Persistent Localization and Life-

Long Mapping in Changing 
Environments Using the Frequency 

Map Enhancement
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TOPOLOGICAL EDGE TRAVERSABILITY 
MODELLING USING FREMEN

Fig. 4. reconstructed signal for traversability and time along different time periods, top left figure is the action outcomes used for the model building, the
remaining three figures represent the predicted pe(t) state along different time frames, one month (top right), one week (bottom left) and one day (bottom
right). Weekly and monthly periodicities are presented starting from Monday, the day depicted in the bottom left figure is a Thursday.

policies that maximise overall expected success of the LTL
task.

In order to generate a policy at a given time t, we start
by creating an MDP model based on the topological map
T = hV,E,N,nav , PEi. This Navigation MDP at time t

is defined as a tuple Mt = hS, s, A, �i, where: (i) S =
V [ {sf} is a finite set of states, corresponding to the
topological nodes, plus a dump state sf , which is reached
after a navigation action failure; (ii) s 2 S is the initial
state, corresponding to the current position of the robot in
the environment; (iii) A = E is a finite set of actions,
corresponding to the edges in the topological map; (iv)
� : S ⇥A⇥ S ! [0, 1] is a probabilistic transition function,
where

P
s02S �(s, a, s0) 2 {0, 1} for all s 2 S, a 2 A. For

vi, vj 2 S, if there is an edge e = (vi, vj) in the topological
map, we define �(vi, e, vj) = pe(t), �(vi, e, sf ) = 1� pe(t)
and �(vi, e, v) = 0 for all v 2 S \ {vj , sf}.

In [20], it is shown how, given a co-safe LTL formula
' and a cost function defined over state-action pairs of the
MDP (in our case, such function would be the expected time
to navigate between two nodes in the environment), one can
create policies that minimize the accumulated cost to gener-
ate a trace of the system that satisfies '. Broadly speaking,
LTL allows for the specification of goals that are not simply
reaching a given target node in the environment, but can
be temporally extended goals that require, for example, a
set of nodes to be visited in a given order, or to visit a
given node while avoiding a set of forbidden nodes. The co-
safe fragment of LTL contains all the formulas that can be
satisfied by a finite trace of the system. An example of such
a task is a mail delivery robot that needs to distribute mail to
different rooms in a building, and minimise the time spent
in delivery so it can be available to do other tasks as soon
as possible.

We adapted the approach in [20], and use the PRISM

model checker [21] to generate a policy that maximizes
the probability of satisfying a co-safe LTL formula, i.e., we
generate the policy that fulfils the task while minimizing the
probability of occurrence of a continuous navigation failure.

The fact that we can specify tasks that involve visiting
more than one node in the topological map allows us to
analyse the different choices taken by the robot at different
times. More specifically, for the navigation MDPs obtained
from the topological map depicted in Fig. 2, we analyse the
policies obtained for formula (F v1_F v14), i.e., “visit either
node v1 or node v14”. This task allows the policy to choose
which node to try to visit first, taking into account the current
position of the robot, and the traversability probabilities for
the edges in the topological map. Furthermore, it is a type
of task that is common for mobile robots. For example, a
data gathering robot might want to unload its data, and in
nodes v1 and v14 there are data unloading stations it can use.
Thus, to increase the robustness of the system, we want the
robot to choose the station it can navigate to with the lowest
probability of failure.

In Table III, we show the probabilities of being able
to execute the task, starting on v5, without any navigation
failures, for different times of day. As expected, it is possible
to see that during the times where it is more probable
for people to be present in the office, the probability of
fulfilling the task without navigation failures is higher. This
is because the robot asks for human intervention when he has
problems navigating, and the presence of people to help it
increases the probability of fulfilling the navigation task (we
do not consider these interactions with humans as failures).
Furthermore, we also analyse the optimal action for v5 at
different times of day. This illustrates the choice the robot
makes on which area of the environment to visit when at
v5. We depict the choice of visiting v14 in light gray, and
the choice of visiting v1 in dark gray. This choice is heavily

J. Pulido Fentanes, B. Lacerda, T. Krajník, N. Hawes, and M. Hanheide. 
Now or later? predicting and maximising success of navigation actions 
from long-term experience. In ICRA, 2015.
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FRONGO LIVE: NAV STATS
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FRONGO OFFLINE
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ADAPTIVE INFO-TERMINAL

15

Administration Wing

Kinder-
garten

Cafeteria

Lobby

Therapy Wind
Conference Area

Total 63 
days >4000 

clicks!  

al(t)

l t

• data recorded:

• where is the robot when?

• did people use the robot where it was? 
(success!)

HRI 2017: The When, Where, and How:
An Adaptive Robotic Info-Terminal for Care Home Residents – A long-term Study
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SPATIO-TEMPORAL 
MODELLING

16

Frequency Map 
Enhancement 

„FreMEn“
al(t)l t

Administration Wing

Kinder-
garten

Cafeteria

Lobby

Therapy Wind
Conference Area

that the texts were very much readably, 15.4% stated that
they rather were and 15.3% stated that it was (rather) not
readable. In terms of ease of use 61.6% of the older adults
stated that they had rather or no di�culties at all. 38.5%
found it rather or very much di�cult to use the screen. In
terms of cognitive e↵ort of using the screen 46.2% mentioned
that it was no e↵ort at all and 38.5% mentioned that it was
rather no e↵ort. No participant stated that it was very much
an e↵ort to use the screen, 15.4% meant that it rather was
an e↵ort.

5.2 Adaptive Scheduling
The main goal of the adaptive scheduling described in

Sec. 3 is to learn about the best locations and times to of-
fer the info-terminal service, and to verify our hypothesis
H1 which stated that adapting to user needs over space and
time in long-term deployment yields more use of the info-
terminal. Over the 43 days where the info-terminal was
run, the robot o↵ered its service to its users a total of 1770
times. In 760 of these occasions (42.9%), the users actually
used the info-terminal, indicated by clicking on the screen.
Fig. 3 presents the locations at which the info-terminal was
o↵ered, the respective success rates of the provision of the
info-terminal, and the number of clicks recorded for each
task at a location. As described in 3, each of these loca-
tions l was associated with a temporal model pl(t), which
represents the probability of successful interaction at time t.
Thus, one of the results obtained are the temporal models for
the individual locations. Examples of five temporal models
learned during the actual deployment are shown in Figure 5,
which indicates that despite of the fact that the temporal
modelling method could not obtain data from nights (oper-
ations times were restricted to 9am-6pm), it predicted that
during night, the probability of interaction is very low.
This result was obtained trough interpolation from the ob-

servation that early morning and late evening interactions
are less probable than interactions during mid-day. These
models also exhibit both daily and weekly periodicities: one
can see that in some areas, obtaining an interaction on Fri-
day afternoon is slightly less probable than during the other
days. In the case of the Cafeteria temporal model, the in-
terpolation into the night time is actually misleading – here,
the robot observed that the info-terminal at the Cafeteria is
mainly used during four peak times that might correspond
to breakfast, lunch, afternoon tea and dinner. Thus, hav-
ing no data from night, the robot simply assumed that the
Cafeteria is busy every 2-3 hours.
However, the temporal model serves only as a means to

construct a meaningful schedule that improves the chances
that the visitors and sta↵ of the facility use the info-terminal
service. During the initial stages of the deployment, the
robot visited all locations with the same frequency, because
initially, all pl(t) were equal to 0.5. As the robot learned the
model, it started to prefer visiting certain locations at cer-
tain times, which resulted in increased chances of obtaining
an interaction. Figure 6 shows the success rates of interac-
tions over time along with a linear regression model. The
p value of the linear model F-statistics versus a constant
model is 6.74 .10�4, which indicates that the increase of the
interaction success rate is statistically significant with p <

0.001. Thus, we can say with certainty that during the de-
ployment, the robot gradually increased the chance of the
info-terminal usage by the visitors and clients of the facility.

Figure 5: Examples of temporal models of selected

locations.
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Figure 6: Interaction success rate over time.

5.3 Where information is requested
In order to analyse which information user chose to look

at at the various location the info-terminal was o↵ered, a
contingency table of the frequencies of specific information
screen being requested has been computed from the logs of
interactions, shown in table 1. In this table, all locations but
the ”ChargingPoint” that o↵ered info-terminal tasks are in-
cluded. ”ChargingPoint” has been omitted, as it is a special
case where info-terminal was o↵ered all the time when charg-
ing and not specifically scheduled for in most cases. Here,
we counted all interactions (clicks on the screen) that led to
the display of the specific information screen, as described in
Sec. 2.2. Over all the 760 instances users interacted with the
info-terminal, they displayed clicked to see di↵erent informa-
tion screens a total of 2513 times (just above 3.3 interactions
per successful task on average). Multiple clicks per task ex-
ecution can be a result of several users interacting during
the 10 minute window or one user looking at di↵erent in-
formation screens in one session. The data does not allow
to discriminate between these two conditions. However, for
the analysis at hand, this discrimination is irrelevant any-
way, as we are interested to identify only if the information
requested by users is dependent on the location (H2 ).
Overall, the �

2 statistics for this contingency table in-
dicate a very significant rejection of the null hypothesis
(df = 33, p < 0.001, overall �

2 = 107.8) that the infor-
mation requested is independent of the location the robot
is o↵ering the info-terminal service. Consequently, we can
assume that indeed the kind of information requested is de-
pending on the location where it is requested, confirming
hypothesis H2. Likewise does table 1 highlight once again
the variance in usage of the info-terminal at the di↵erent
locations, exploited in the adaptation of the info-terminal
scheduling.
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Administration Wing

Kinder-
garten

Cafeteria

Lobby

Therapy Wind
Conference Area

CHOOSING THE NEXT 
LOCATION

• predicted utility of a location l:

• use utility to sample next location to go, greedily, new place every 10 
minutes

• Here we set ε=0.5 (exploration-exploitation ratio) 

• start with pl(t) = 0.5 at the beginning

• more on exploitation-exploration and planning horizons in  
Kulich, M., Krajnik, T., Preucil, L., and Duckett, T.  To explore or to exploit? Learning humans’ behaviour to 
maximize interactions with them. In Proceedings of the Workshop on Modelling and Simulation for 
Autonomous Systems (MESAS) 
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Frequency Map 
Enhancement 

„FreMEn“
l t

During out robot operation, each candidate info-terminal
location is tied to a FreMEn model that maintains the num-
ber of performed interaction attempts n, mean probability
µ, and two sets A, B of complex numbers ↵k and �k that
correspond to the set ⌦ of potential periodicities !k of the
hidden processes that a↵ect the chance of successful inter-
action (i.e. the chance that the info-terminal is used). To
initiate an interaction, the robot positions itself at a given lo-
cation, records the current time t, displays the info-terminal
interface and waits for a predefined amount of time. If the
info-terminal interface is used by anyone during the given
time period, the robot sets the interaction flag a(t) to 1,
otherwise it keeps a(t) equal to 0. After the time period
elapses, the FreMEn model of the given location is updated
as follows:

µ  1
n+1 (nµ+ a(t) ),

↵k  1
n+1 (n↵k + a(t) e�jt!k ) 8!k 2 ⌦,

�k  1
n+1 (n�k + µ e

�jt!k ) 8!k 2 ⌦,

n  n+ 1,

(1)

where µ represents the mean, time-independent probability
of interaction, n is the number of interaction attempts per-
formed, and ↵k,�k represent the frequency spectrum of the
history of past interactions a(t). While the absolute value
of each ↵k corresponds to the influence of a hidden process
with the frequency !k on the probability of interaction p(t),
the �k serve as corrections that prevent the model overfitting
during the early stages of model construction.

To predict the probability of interaction at a given time
t, we first construct a set C consisting of complex numbers
�k = ↵k � �k, which are ordered reverse to their absolute
values. Then, we select the first m elements �j along with
their corresponding frequencies !j . The elements �j and
!j , which correspond to the influence and periodicity of the
hidden processes that a↵ect the interaction probability are
then used to estimate the interaction probability at a given
location and time by:

p(t) = &(µ+
mX

j=1

|�j |cos(!jt+ arg(�j))), (2)

where the function &(.) ensures that p(t) 2 [0, 1]. Since we
assumed that the interaction probabilities will be influenced
mainly by daily and weekly routines, we set the constant m
to the value of 2. An overview and additional details of the
FreMEn concept are provided in [11].

3.2 Model exploration and exploitation
However, the spatio-temporal modelling method is not

su�cient by itself. First, in order to create the model and
keep it up to date, the robot must be able to provide the
model with useful data. Second, one has to determine how
to use the predictions to guide the robot in order to max-
imise the number of interactions. Both of these aims have to
take into account the limitations of the robot, especially the
energy-based constraint that requires the robot to recharge
its batteries at least 50% of its operational time.

The first part of the problem, called life-long spatio-
temporal exploration, was studied in [13, 20]. In here, the
authors evaluated several spatio-temporal models and explo-
ration strategies to be able to predict people occurrence in
o�ce and domestic environments. The paper [13, 20] con-

cluded that the best model is based on the FreMEn concept
and the best exploration strategy, i.e. a process that de-
termines which locations to visit and when to visit them,
is based on a Monte-Carlo scheme which takes into account
the information gain obtainable by a visit to a given loca-
tion. In the work presented in [13], the robot would establish
a new schedule each midnight, ensuring that at least 50%
of the time is spend on the charging station. The schedule
would then be followed throughout the day, with occasional
modifications imposed by unexpected events.
Unlike in [13, 20], which aim to create an accurate spatio-

temporal model, but do not need to exploit the information
the model provides, we need an accurate model only be-
cause its predictions are essential to create a schedule for
the info-terminal service. Thus, our strategy needs to take
into account both information gain that keeps the model
up-to-date and the probability of obtaining an actual inter-
action. To construct the schedule for the next day, the robot
partitions the following day to slots of identical duration and
calculates the utility of visiting each location as

ul(t) = ✏h(pl(t)) + (1� ✏) pl(t), (3)

where ✏ represents the exploration/exploitation ratio and
h(p) is the information gain calculated by

h(p) = �p ln2 p� (1� p) ln2(1� p). (4)

After calculating the utility function for all possible times
and locations, a schedule is generated by a Monte Carlo
scheme, which prefers locations and times according to the
utility function ul(t). The exploration/exploitation ratio ✏

determines how much emphasis is given to the model build-
ing compared to the model exploitation. An ✏ equal to 1
would result in a system that builds the best model possi-
ble, while not using it to obtain many interactions. Setting
✏ to 0 will cause the system to try to get many interactions,
but risking that the robot will miss some good locations
and times. For details on the Monte-Carlo based schedule
creation, see the paper [13].

4. STUDIES DESIGN
During each year of the project the robot is deployed

at the same long-term care provider. Key target groups
are older adults with progressed dementia, severe multi-
morbidity or physical deficiencies. Furthermore the care
home features units for persons with vigil coma or advanced
multiple sclerosis. In total 350 beds are provided for per-
manent residency and there is a sta↵ of approximately 465
employees. The robot is deployed only at the ground floor of
the care facility, traversing corridors that link the adminis-
trative wing, with di↵erent o�ces, with a reception hall and
a therapy wing with an ambulance area for acute medical
aid. Hence, the potential user group is very heterogeneous,
ranging from residents with cognitive decline, their visitors,
to employees from di↵erent professions. Corridors are often
crowded with by-passers, either on foot or with the help of
di↵erent walking aids, wheelchairs or bedridden persons.
It is within this environment the robot has been deployed

for a total of 63 days, providing a number of services (see
Section 1) among which is the info-terminal. Two dedicated
studies are presented in this context: (i) a post-hoc analysis
of logged data from the 63 days duration of the long-term
deployment of the info-terminal robot, called ”Long-term
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MORE AND MORE 
INTERACTIONS

‣ Linear regression on average success rates per day.

‣ rejection of H0 (constant number of interactions) with p=0.000674.
18
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FRONGO LIVE: INTERACTIONS
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Robots do fail: 
(interactive) Recovery  
behaviours are needed

Embrace the 
Change: Prospects 
and Challenges of 

Long-term Autonomy 
and Interaction

Learning routines can help 
building more effective and 
efficient systems, spectral 

models are very powerful to 
improve long-term 

navigation.

http://fremen.uk https://lcas.lincoln.ac.uk/

http://fremen.uk
https://lcas.lincoln.ac.uk/

