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Abstract— We present a novel approach to mobile robot
search for non-stationary objects in partially known environ-
ments. We formulate the search as a path planning problem
in an environment where the probability of object occurrences
at particular locations is a function of time. We propose to
explicitly model the dynamics of the object occurrences by their
frequency spectra. Using this spectral model, our path planning
algorithm can construct plans that reflect the likelihoods of
object locations at the time the search is performed.

Three datasets collected over several months containing
person and object occurrences in residential and office en-
vironments were chosen to evaluate the approach. Several
types of spatio-temporal models were created for each of these
datasets and the efficiency of the search method was assessed
by measuring the time it took to locate a particular object.
The results indicate that modeling the dynamics of object
occurrences reduces the search time by 25% to 65% compared
to maps that neglect these dynamics.

Index Terms— mobile robotics, long-term autonomy

I. INTRODUCTION

Searching for an object is a practical task in everyday life
that would be trivial if we had perfect knowledge about our
own environment. Knowing the position of a searched object
in advance means that search does not have to be performed
at all. Unlike the highly structured and well-defined worlds of
factory assembly lines, which are engineered to minimise the
uncertainty in object positions, the locations of most objects
in human-populated environments are inherently uncertain.
The uncertainty of human-populated environments is induced
by the humans themselves, as they change not only their own
locations, but also the positions of the objects they use. This
motivates the need to understand (or at least represent) the
dynamic processes that influence the locations of the humans
and the items that they use.

We assume that the search task is supposed to be carried
out by a mobile robot that is able to detect the searched
object using its on-board sensors. To perform the search
efficiently, the robot has to be able to plan its motion through
the environment. Better knowledge about possible object
location leads to more efficient plans and hence, shorter
times to locate the desired object. Most path-planning al-
gorithms require this knowledge in the form of a probability
distribution over possible object locations. This distribution

1Lincoln Centre for Autonomous Systems, University of Lincoln, UK
{tkrajnik,duckett}@lincoln.ac.uk

2Faculty of Electrical Engineering, Czech Technical University in Prague,
Czech Republic {kulich}@fel.cvut.cz

3Intelligent Robotics Lab, University of Birmingham, UK
{lxm210}@cs.bham.ac.uk

4KTH - Royal Institute of Technology, Sweden
{raambrus}@kth.se

is typically constructed by means of probabilistic inference
that takes into account several factors including the history
of the searched object locations.

We argue that in human-populated environments, the ob-
ject locations are primarily influenced by human activities
that tend to exhibit daily and weekly routines. We show
that identification and modeling of these routines leads to
a more faithful representation of possible object locations
and hence to a faster and more efficient search. To represent

Fig. 1: Example environment with probabilities of person
presence in two rooms.

the probabilities of object locations we use a traditional
topological map where each node is associated with a
temporal model that captures the dynamics of the object
occurrence at that particular location. These temporal models
are based on Periodic Gaussian Mixtures similar to the ap-
proach proposed in [1] and the Frequency Map Enhancement
(FreMEn) technique [2] that allows to introduce dynamics
into static environment models. We evaluate the Gaussian-
and spectral-based temporal models on datasets gathered over
several weeks and show that the search performed by a
mobile robot is faster when using spatio-temporal models
with probabilities that reflect the environment dynamics.



II. RELATED WORK

The problem of finding a static object of interest has been
studied from various perspectives. The operational research
community defines the Minimum Latency problem (MLP,
also known as the Traveling Deliveryman Problem or the
Traveling Repairman Problem) as a problem of constructing
a tour through all nodes in a graph that minimizes the sum
of latencies of the nodes, where the latency of a node is
the distance needed to travel to that node. The problem
has been proven to be NP-hard [3]. Nevertheless several
exact exponential time algorithms were introduced such as
an integer linear programming approach [4] and a branch
and bound algorithm [5]. Moreover, several approximate
algorithms were presented recently. Salehipour et al. [6]
present a meta-heuristic combining General Randomized
Adaptive Search (GRASP) with Variable Neighborhood De-
scent (VNS). A meta-heuristic called GVNS (General Vari-
able Neighborhood Search) is introduced in [7], while integer
linear programming is used in [8].

Koutsoupias et al. [9] extend MLP by introducing the
Graph Searching Problem (GSP), where the latency of each
node is multiplied by a constant weight associated with that
node, and prove that GSP can be reduced to MLP under
certain conditions. Furthermore, Ausiello et al. [10] present
a reduction algorithm for the metric GSP and the GSP on
tree networks.

While the previous approaches are defined on a graph,
Sarmiento et al. [11] formulate the problem in the polygonal
domain, where the time required to find a static object is
a random variable induced by the choice of search path
and a uniform probability density function over the object’s
location. They propose a two-stage process to solve the
problem: a set of locations (known as ‘guards’ from the
art gallery problem [12]) to be visited is determined first,
followed by finding the order of visiting those locations to
minimize the expected time to find an object. The optimal
order is determined by a greedy algorithm in a reduced
search space, which computes a utility function for several
steps ahead. This approach is then used in [13], where
robot control is assumed in order to generate smooth and
locally optimal trajectories. Recently, Kulich et al. presented
the search problem for a robot operating in an unknown
environment [14].

Other approaches model spatial relations about objects
in the scene and use these relations to constrain the space
of possible object locations. It has been shown that the
refinement of the locations considered for search has a
positive influence on search performance [15]. For example,
object search based on Qualitative Spatial Relations is pre-
sented in [16], while five priors representing structure of the
world and the specific scene are encoded into a probabilistic
model and used to build consistent hypotheses about object
locations in [17].

The idea of modeling the long-term dynamics of indoor
environments was presented in [2], where the authors argue
that part of the environment variations exhibit periodicities

and represent the environment states by their frequency
spectra. The concept of Frequency-based Map Enhancement
(FreMEn) was applied to occupancy grids in [18] to achieve
compression of the observed environment variations and
to landmark-based maps in order to increase robustness of
mobile robot localization [19]. In this paper, we show that
usage of dynamic maps based on the same concept allows
for better planning in the context of mobile robotic search.

III. PROBLEM FORMULATION

The search problem can be generally understood as nav-
igation through an environment in order to find an object
with an unknown location. By finding an object we mean
the situation when it is first detected by the robot’s sensors.
A criterion to minimize is the time when this situation
occurs. In this paper, we assume that the topology of the
environment is known a priori and the object to be found
remains stationary during the search.

The problem is formally defined as a variant of the Graph
Searching Problem [9]. That is, given
• an undirected graph G(V,E), where V is a finite set of

vertices and E is a set of edges between these vertices,
• d : E → R the time needed to traverse the edge, and
• p : V → 〈0, 1〉 the probability of presence of the

searched object at the given vertex,
the objective is to find a walk ω∗ = 〈ω0, ω1, . . . ωk〉 in G,
which visits all nodes of V at least once (i.e. ∀v ∈ V ∃ωj ∈
ω∗ : ωj = v) and which minimizes the expected time to
find the object as

ω∗ = arg min
ω∈Ω

E(T |ω), (1)

where Ω is a set of all possible walks in G and

E(T |ω) =

|ω|∑
i=1

p(ωi) i∑
j=1

d(ωj−1, ωj)

 . (2)

The minimal expected time is then

Texp = E(T |ω∗). (3)

IV. TEMPORAL MODELS

The underlying environment representation used in our
approach is a topological map, where nodes represent distinct
areas and edges represent the robot’s ability to move between
them. Each node of our map is associated with a probability
of person presence and each edge contains information about
the time it takes to move between the map’s nodes. Unlike
traditional maps, the probabilities associated with particular
nodes are not constant, but are functions of time. These
functions are estimated through long-term observation of the
person or object presence at the given locations.

A. Frequency map enhancement

Frequency Map Enhancement (FreMEn) is a method that
can introduce dynamics into static environment models [2].
So far it was applied to mobile robotic mapping and lo-
calization in scenarios where the robots are required to



operate autonomously for long periods of time. FreMEn
assumes that most of the indoor environment states are
influenced by humans that perform their regular daily ac-
tivities. The regularity and influence of these activities on
the environment states is obtained by means of frequency
transforms. Specifically, FreMEn extracts the frequency spec-
tra of binary functions that represent long-term observations
of environment states, discards non-essential components of
these spectra and uses the remaining spectral components to
represent probabilities of the corresponding binary states in
time. The authors of FreMEn have shown that introducing
dynamics into volumetric, topological and landmark-based
environment models enables these to represent the world
more faithfully [2], [18], which in turn results in increased
robustness of mobile robot self-localization [19].

Let us assume that the presence of an object at a particular
area of the environment is represented by a binary function
of time s(t). Let us represent the uncertainty of the state s(t)
by its probability p(t). Then, the main idea of FreMEn is to
represent a (temporal) sequence of states s(t) by the most
prominent components P (ω) of its frequency spectrum S(ω)
= F(s(t)), where F(.) represents the Fourier transform.
The advantage of this representation is that each spectral
component of P (ω) ⊂ S(ω) is represented by three numbers
only, which leads to high compression rates of the observed
sequence s(t).

To create the FreMEn model, the frequency spectrum
S(ω) of the sequence s(t) is first calculated. The first
spectral component a0, which represents the average value
of s(t) is stored. The remaining spectral components of
S(ω) are ordered according to their absolute value and
the n highest components are selected. Each component
represents a harmonic function that is described by three
parameters: amplitude aj , phase shift ϕj and frequency ωj .
The superposition of these components, i.e.

p(t) = a0 +

n∑
j=1

ajcos(ωjt+ ϕj), (4)

allows to estimate the probability p(t) of the state s(t) for
any given time t. Since t is not limited to the interval when
s(t) was actually measured, Eq. (4) can be used not only
to interpolate, but also to predict the state of a particular
model component. In our case, we use Eq. (4) to predict the
presence of the searched object in a particular room.

While the aforementioned representation deals well with
periodicities, it suffers from two disadvantages:

• it allows to model only one process per frequency,
• it poorly models regular, but short-duration events.

Many of the daily activities that occur in an apartment or
an office exhibit both of the aforementioned characteristics.
Examples include preparing a hot drink, brushing teeth or
taking a shower – these activities typically occur on a
regular basis and take a short time. Moreover, some of the
aforementioned activities influence the presence of objects
in the same room.

Application of the Fourier Transform to temporal se-
quences that possess the aforementioned characteristics
causes it to approximate these functions with high-frequency
harmonic components. However, these components do not
correspond to any regular patterns that actually occur in the
environment and therefore decrease the predictive capabili-
ties of the frequency-based temporal model. The results pre-
sented in [2], [19] suggest that the best predictive capabilities
are achieved by FreMEn models of the 2nd or 3rd order. Such
low-order models are not able to represent short-duration
events.

B. Gaussian Mixture Models

Gaussian Mixture Models that can approximate multi-
dimensional functions as a weighted sum of Gaussian com-
ponent densities are a well-established method of function
approximation. A Gaussian Mixture Model of a function f(t)
is a weighted sum of m Gaussian functions:

f(t) =
1√
2π

m∑
j=1

wj
σj
e
−

(t−µj)
2

2σ2
j . (5)

GMMs find their applications in numerous fields ranging
from Botany to Psychology [20]. The parameters of indi-
vidual components of GMMs, i.e. the weights wk, means
µj and variances σj are typically estimated from training
data using the iterative Expectation Maximization (EM) or
Maximum A-Posteriori (MAP) algorithms. While GMMs
can model arbitrarily-shaped functions, their limitation rests
in the fact that they cannot naturally represent functions that
are periodic.

To deal with this issue, we simply assume that people
perform most of their activities on a daily basis and thus we
consider the object presence in the individual areas as being
the same for every day. While this assumption is not entirely
correct (as working days will be different from weekends),
such a temporal model might still be better than a ‘static’
model where the probability of object presence is a constant.

Prior knowledge of the periodicity allows to transform the
measured sequence of states s(t) into a sequence p′(t) by

p′(t) =
k

τ

k/τ∑
i=1

s(t+ iτ), (6)

where τ is the assumed period and k is the s(t) sequence
length. After calculating p′(t), we employ the Expectation
Maximization algorithm to find the means µj , variances σj
and weights wj of its Gaussian Mixture approximation. Thus,
the probability of occupancy of a room at time t is given by

p(t) =
1√
2π

m∑
j=1

wj
σj
e
−

(mod(t,τ)−µj)
2

2σ2
j , (7)

where τ is the a priori known period of the function p(t) and
mod is a modulo operator. The advantages of this periodic-
GMM-based (PerGaM) model are complementary to the
weaknesses of the FFT-based one. It can approximate even



short, multiple events, but it can represent only one period
that has to be known a priori.

An example comparison of the PerGaM and FreMEn
models of person presence in a week-long experiment in
an office environment is shown in Figure 2. The figure
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Fig. 2: PerGaM and FreMEn models example/comparison.

demonstrates that while PerGaM can model short-term event
like lunch-breaks, it fails to capture the week-long dynamics.

V. SEARCH ALGORITHM

The proposed path-planning search algorithm is a variant
of branch-and-bound based on a recursive version of depth
first search (DFS).

Procedure BranchAndBound(walk)
1 if all vertices visited then
2 if current walk faster than the fastest one then
3 set the current walk as the fastest one;

4 else if estimated walk time exceeds fastest walk then
5 return
6 else
7 foreach not visited vertex do
8 backup the current state;
9 append the shortest path P to the last vertex;

10 update the cost (duration) of walk;
11 mark all vertices in P as visited;
12 call BranchAndBound(walk);
13 restore the state;

The algorithm systematically constructs all possible
walks (see Procedure BranchAndBound) in G by calling
BranchAndBound(start), where start is the vertex where
the robot starts searching. The procedure starts by testing
whether the current walk contains all vertices of G. If

this is the case and the walk w is faster than the current
fastest solution fastest (i.e., E(T |w) < E(T |fastest)) then
w becomes the new fastest solution (lines 2-3). If w is
worse than fastest the procedure is finished, leading to
backtracking of the BFS (line 5). Remaining vertices to visit
are sequentially processed at lines 7-13. For each unvisited
vertex v, the shortest (in time) path P is determined from
the last vertex in w to v and appended to w: w = w ∪ P
(line 9). Moreover, the new cost of w according to Eq.(3) is
computed and all vertices in P are labeled as visited (lines
10-11). BranchAndBound is then called on the new walk at
line 12. Note that backing up and restoring of the current
state (walk, its cost, and the marking of visited vertices) at
lines 8 and 13 allows for efficient backtracking.

To achieve effective branching and thus low computation
times, several improvements to the original algorithm were
made. Firstly, the vertices in the foreach cycle at line 7 are
processed in increasing distance to the last vertex in w, i.e.
more promising shorter edges are processed first. Secondly,
Johnson’s algorithm [21] is run in the preprocessing phase
to find the shortest paths between all pairs of vertices, which
are used at line 9. Finally, the estimated cost (i.e. the lower
bound of all walks with a prefix w) T exp(w) at line 4 is
determined as

T exp(w) = E(T |w) +

K∑
i=0

piDi,where

Di = D(w) +

i∑
ι=0

dι,

where K is the number of unvisited vertices, D(w) is
the length of w, and d is an array containing the shortest
edges incident to the unvisited vertices sorted in ascending
order. Similarly, p is a descendingly sorted array of weights
(presence probabilities) of the unvisited vertices.

The algorithm is exact and solves small-size instances in a
reasonable time, i.e. the ‘Brayford’ problem with 11 vertices
(see section VI) in less than 1 ms, a graph with 20 vertices
in 6 sec and a graph with 25 vertices in 60 sec on a standard
computer.

VI. EXPERIMENTS

To evaluate the utility of temporal models to speed-up
the robotic search, we performed an extensive comparison
of the proposed methods on two long-term datasets where
the searched object is a human and one dataset with several
objects in everyday use. Each dataset was divided into
separate training and testing sets. The training sets were used
to establish the temporal models of the nodes’ occupancy
(person or object presence) and edge traversals times. The
testing sets were used to establish the time statistics of the
search.

The first, ‘Aruba’ dataset [22] was collected by the Center
for Advanced Studies in Adaptive Systems (CASAS) to
support their research concerning smart environments. The
second ‘Brayford’ dataset [19] was created by the Lincoln
Centre for Autonomous System (LCAS) as a part of the



collaborative EU-funded STRANDS project, which aims
to enable long-term autonomous operation of intelligent
robots in human-populated environments. The third ‘KTH’
dataset was created by the Royal Institute of Technology in
Stockholm, also as part of the STRANDS project.

A. Aruba dataset

The ‘Aruba’ dataset contains measurements collected by
50 different sensors distributed over a 12×10 m, seven-
room apartment over a period of 16 weeks. The apartment is
occupied by a single person who is occasionally visited by
other people. To estimate person presence in the individual
rooms of the apartment, we processed the ON/OFF events
from the dataset’s motion detectors. A room is considered to
be occupied if any of its motion sensors report movement.
In case no motion is detected by any of the sensors, the
occupancy value of the corresponding room is unchanged,
i.e. the last room reported to be occupied retains its state.

The apartment was partitioned into nine different areas,
seven of which represent the rooms and two correspond to
corridors – see Figures 1 and 3. Thus, we obtained nine
sequences that represent the occupancies of individual areas
second-by-second for 16 weeks. The first 4 weeks of the data
were used to train the temporal models of room occupancy
and the remaining 12 weeks of the data were used as a testing
set, i.e. for the evaluation itself. Thus, each areas’ occupancy
training and testing set consists of more than 2.4 million and
7.2 million samples, respectively. Note that the occupancy
probabilities of the individual areas do not have to sum to
one, because the apartment is sometimes completely empty
and the inhabitant is occasionally visited by relatives. To

Fig. 3: Aruba and Brayford datasets - topological maps.

establish the times it takes to move between individual areas,
a simulated environment based on the ‘Aruba’ apartment
layout was created, see Figure 1. A virtual SCITOS-G5
mobile robot was placed in the apartment model and set
up to autonomously navigate between the individual rooms.
The robot’s trajectory was recorded, and the average times it
took to traverse between the individual areas were calculated
and used as edge traversal times of the topological map used
by the planning algorithm. The average times (in seconds)
are shown on the Aruba topological map, see Figure 3. Thus,
the resulting topological representation is based on both real-

world data (room occupancies) and simulated data (time to
navigate between rooms).

B. Brayford dataset

The Brayford dataset was collected by a SCITOS-G5
mobile robot (see Figure 4) equipped with an RGB-D camera
mounted on a pan-tilt unit and a laser rangefinder. The robot
was programmed to patrol a large, open-plan office of the
Lincoln Centre for Autonomous Systems. Its autonomous
navigation was based on an improved ROS navigation stack
and a visual-based method for precise docking at the robot’s
charging station [23]. While the robot’s laser rangefinder
was used for autonomous navigation, the robot’s Asus Xtion
RGB-D camera was used for data collection. The robot was

Fig. 4: The SCITOS-G5 robot and example images of the
Brayford dataset.

set-up to capture RGB images of eight designated areas of
the office every ten minutes for two weeks of November
2013 and one week of February 2014. While the first week
of the November data was used as a training set, the testing
set consisted of two days – one captured during November
2013 and one on February 2014. The training and testing
datasets consisted of approximately 10000 images that were
manually checked for people presence (see Figure 4). To
establish the edge traversal times, the trajectory recorded
during data collection was analysed similarly to the Aruba
dataset.

C. KTH dataset

One might argue that the Aruba and Brayford datasets
are not related to object search since the robot searches
for people. To verify whether the locations of objects in
everyday use also exhibit periodicities, a specialized dataset
was created at another site. The KTH dataset was collected
by a SCITOS-G5 mobile robot (see Figure 4), in the Com-
puter Vision and Active Perception lab at KTH Stockholm,
over the course of five weeks. During this time the robot
conducted between two and six autonomous patrol runs
per day (weekends were excluded), visiting three specific
waypoints during each run. Upon reaching a waypoint, the
robot would execute a pan-tilt sweep and collect data from
its RGB-D sensor; the RGB-D frames collected during one
sweep were then registered spatially to form an observation



of that particular waypoint at that time. The KTH dataset
contains approximately 100 observations per waypoint, and
at each waypoint we extracted the dynamic elements of
the environment using the ‘MetaRoom’ method described
in [24].

Fig. 5: Example observations with identified static (red) and
dynamic (green) structures.

These dynamic elements correspond to movable objects
such as jackets, backpacks, laptops, chairs, bottles, mugs,
etc. For the experiments presented in this paper, we manually
labeled these dynamic clusters to obtain 37 different objects,
out of which 14 tend to appear and disappear periodically.
Using the first four weeks of the KTH dataset, dynamic mod-
els of these objects’ presence were created. The remaining
week was used as testing data.

VII. RESULTS

A. Aruba and Brayford datasets

To evaluate the influence of the temporal models on
the time taken for the robotic search, we first built seven
temporal models of each of the two environments and
used these as an input for the search algorithm described
in Section V. Three temporal models were based on the
FreMEn concept and differed in the number (one to three)
of spectral components included in the model. Another three
‘PerGaM’ temporal models consisted of the Periodic Gaus-
sian Mixtures, where the daily occupancy was modeled by a
combination of one-to-three Gaussians. Finally, a reference,
‘Static’ model represented the occupancy of each area by
a constant probability. Each of these models was used to
predict the probabilities of area occupancies for every minute
of the Aruba and every 10 minutes of the Brayford testing
sets. Each of the topological maps generated was used as
an input for the planning algorithm V that calculated an
optimal (in the sense of criterion (1)) robot path. Using the
ground truth data of the testing sets, we determined the time
it would take for the robot to find a person at a particular
time using a given temporal model. The testing set of the
Aruba environment allowed us to perform over ∼850 000
search runs (7 evaluations every minute for 12 weeks) and
the Brayford results are based on ∼2000 testing runs (7
evaluations every 10 minutes for two days). To indicate the
impact of using the temporal models for the robot search, we
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Fig. 6: Five-point summary of search times for different
temporal models - Aruba dataset.
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Fig. 7: Five-point summary of search times for different
temporal models - Brayford dataset.

provide graphs of five-point characteristics extracted from
the aforementioned testing runs. Figures 6 and 7 show
that in general, usage of the temporal models allows to
construct plans that are more likely to find a person in a
given environment faster than in cases when the temporal
information is neglected (the ‘Static’ models). Compared
to the stationary models, the median time of the dynamic
models’ testing runs is lower by 35-65%, while the average
search time was reduced by approximately 25%. However,
Figure 6 also indicates that in about 6% of cases, the plan
that takes into account the temporal models performs worse
than the one using a static model. This is typically caused
by short-term absences of persons at the expected locations
and cases when the environment is completely vacant.

To further evaluate the results, we calculated the mean
times it takes to find the person when the environment is not
empty. The mean time of finding a person along with the
median time to complete the search is shown in Table I.

B. KTH dataset

The KTH dataset is different from the Aruba and Brayford
ones, because the objects sometimes appear at a particular
waypoint only. Instead of having the robot plan a sequence
of rooms to move through, we decided it should find a
set of objects at this waypoint and let it decide when to
visit that waypoint. Instead of visiting the place at regular



TABLE I: Mean (µ) and median (t̃) time to find a person

Model
Dataset

Aruba Brayford
type order µ[s] t̃[s] µ[s] t̃[s]

Static - 44 41 19 23
FreMEn 1 36 15 14 9
FreMEn 2 33 15 14 9
FreMEn 3 34 15 16 9
PerGaM 1 34 15 14 15
PerGaM 2 33 15 14 15
PerGaM 3 33 15 14 15

intervals, the robot calculates the joint probability of the
objects’ presence for the time of the intended patrol and
decides to visit the place only when the probability of the
searched objects exceeds 0.5. This experiment shows that
this policy decreased the number of visits needed to find all
the objects by 33%.

VIII. CONCLUSION

We have presented a novel approach to the mobile robot
search problem based on spatio-temporal environment mod-
eling and efficient probabilistic path planning. We assume
that the topology of the robot’s operational environment is
known and that the searched object locations are influenced
by human activities which tend to exhibit a certain degree of
periodicity. This assumption allows to model the likelihood
of object occurrences at particular locations as a combination
of periodic functions which are identified from the long-
term observations of object occurrences. These functions
constitute dynamic probability distributions of the searched
objects’ locations, which allow to create different search
plans for different times of day. In other words, our approach
allows to integrate several observations of the same environ-
ment in a spatio-temporal model that captures the periodic
aspects of object occurrences and uses this knowledge to
construct time-dependent plans for the object search.

The experimental evaluation performed on datasets gath-
ered over several weeks show that explicit representation of
the long-term periodicities of environment dynamics speeds
up the search process. Compared to traditional probabilistic
models that neglect long-term environment dynamics, using
the proposed spatio-temporal models for path planning re-
sulted in a 25% - 65% reduction in the time needed to locate
the searched object.

The tests have shown that the spectral-based dynamic
models speed up the search slightly more than the Gaussian-
based ones, though the difference was not statistically signif-
icant in our experiments. Since these two temporal models
have complementary strengths and weaknesses, we plan to
combine them in a two-stage method that first identifies the
periodicities by a Fourier Transform and then approximates
the periodic events by Gaussian Mixtures. We also plan
to experimentally verify other temporal models, such as
Gaussian processes.
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