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Abstract. Self-organised flocking behaviour, an emergent collective mo-
tion, appears in various physical and biological systems. It has been
widely utilised to guide the swarm robotic system in different applica-
tions. In this paper, we developed a self-organised flocking mechanism for
the homogeneous robotic swarm, which can achieve the collective motion
with obstacle avoidance in a cluttered environment. The proposed mech-
anism introduces an obstacle avoidance approach to the Active Elastic
Sheet model that was previously proposed for self-propelled particles.
The proposed mechanism is represented by a nonlinear repulsive force
inspired by Lennard-Jones potential function in molecular dynamics. In
order to evaluate the flocking performance, three different environmental
settings were implemented. Results revealed that the interaction mecha-
nism significantly determines the robustness and stability of the swarm
in flocking.
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1 Introduction

Flocking of social animals is a commonly observed behaviour in many bi-
ological systems from tiny bacterial community to social animals such as fish
school [9], sheep herds [14] and birds flocking [7]. Flocking, also known as collec-
tive motion, has been widely implemented in swarm robotic systems [16] such
as exploration in precision agriculture [1] and unmanned aerial vehicles swarm
coordination control [21].

The underlying mechanism of flocking behaviour steers a group of individuals
to coherently move with an approximately identical speed and direction. Hence,
the entire swarm moves together like a super-organism with astounding elegance
and flexibility [19]. This large-scale swarm flocking presents the same universal
property that, the emergent flocking behaviour only relies on the local interac-
tions between robots without any need for global communication and any central
control law. Researchers from physics to biology have proposed different collec-
tive motion models [20, 8, 4, 12, 2]. These models effectively reveal and describe
the collective motion principles in large-scale swarm scenarios. One of the most
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important models is proposed by Vicsek et al. [20], which was followed by other
study like [3]. It is a minimal agent-based model where individuals follow veloc-
ity alignment rule. This model establishes a fundamental and explicit interaction
principle called the alignment rule. Despite many subsequent complex models
were introduced to achieve self-organised flocking in a more precise and natu-
ral way [10, 3, 2], they can be considered as the variants of Vicsek model since
they all strongly rely on the velocity-based alignment interaction to perform self-
organised collective motion. However, this pioneering model still has limitations
to fully depict self-organised flocking motion, especially for swarm robotic appli-
cations. Firstly, the velocity-based algorithm not only requires robots to obtain
the orientation of neighbouring robots in short communication range, but it also
needs their relative positions to determine the neighbouring topology. Hence,
the robots must have a strong computational ability and a reliable inter-robot
communication to address the issue, e.g. by using local communication meth-
ods [11]. Secondly, the swarm achieves collective motion in an infinite and ideal
space without any physical boundary restriction, e.g. walls. Therefore, it is not
practical for a real-world swarm robotic system where robots encounter obsta-
cles and in a cluttered environment. In addition, velocity-based model assumes
that each robot is set up with a fixed speed, and only orientation can be ad-
justed in each step. It significantly restricts the swarm in terms of flexibility and
adaptability in case of the complex environments. Considering the limitations of
the velocity alignment, another collective mechanism for flocking was proposed
by Ferrante et al. [6, 5], which developed a novel position-based decentralised
algorithm for achieving a collective motion. They abstracted self-propelled par-
ticle swarm in two-dimensional active solids, and introduced the Active Elastic
Sheet (AES) model. The individual interaction is based on attractive-repulsive
forces. Robot’s motion is driven by the combination of linear elastic forces from
its fixed neighbouring topology. Therefore, the agent-based model only rely on
the exchange information of relative position, rather than including the heading
orientation of neighbouring robots, which significantly alleviates the requirement
of hardware computation and perception. In addition, in [15, 22], both simulated
and real robot experiments demonstrated the feasibility of AES model in the real
swarm robot applications.

The AES model does not consider the limitations of the real-world envi-
ronments since it is derived from the collective behaviour of the perfect active
crystal. Inevitably, in a real-world scenario, there exists plenty of physical bound-
aries including obstacles and walls. Therefore, in this work, we developed a new
flocking method based on the AES model, that facilitates application of the
flocking in real-world scenarios with several obstacles– cluttered environments.
In this work, we investigated different states of the swarm trajectory when an in-
teraction between the swarm and obstacles happens in a cluttered environment.
We modelled a repulsive force for collision avoidance and combined it with the
AES model’s attraction-repulsion force. In addition, the impact of the proposed
model in presence of obstacles with different collective forces was investigated.
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2 Flocking Method

2.1 Active Elastic Sheet Model

The agent-based AES model [5] can produce the self-organised collective
motion, even in the presence of noise. It can also start from swarm system with
random initial orientation and position. Rather than orientation and alignment
interaction, each pairwise of robots only exchange the position information, then
generate the corresponding elastic force to affect the robot’s motion state. Its
simplicity contributes to implementing self-organised flocking in swarm robotic
applications. As introduced before, in a swarm system including N robots, indi-
vidual’s motion dynamics is determined by the spring-like forces from its fixed
neighbouring robot set. The attraction-repulsion forces affect both the linear and
angular velocities of the robot during flocking. This continuous-time model can
be illustrated mathematically as:

−̇→x i = v0n̂i + α[(
−→
F i +Dr ξ̂r) · n̂i]n̂i , (1)

θ̇i = β[(
−→
F i +Dr ξ̂r) · n̂⊥i ] +Dθξθ , (2)

where, −→x i and θi are position and orientation of the ith robot. v0 is the self-
propelled forward biasing speed that is imposed into all robots. n̂i and n̂⊥i are
two unit vectors pointing parallel and perpendicular to the heading direction of
the ith robot, and two parameters α and β are inverse translation and rotation
damping coefficients, respectively. The motion essence of AES model is that the
robot adjusts its linear and angular velocities based on the projection of forces
in parallel to its heading and perpendicular to its heading.

This model also concentrates on the impact of noise from both measure-
ment and actuation; Dr ξ̂r is the error from the measured forces and Dθξθ is
the fluctuation of the individual motion. ξ̂r is a randomly generated unit vector
for noise strength coefficient Dr. Also, ξ̂r is a random variable with standard,
zero-centred normal probability distribution for noise strength coefficient of Dθ.
The total linear elastic force,

−→
F i, is originated from those neighbouring robots

interacting with the ith robot. It can be calculated as follow:

−→
F i =

∑
j∈Si

−k
lij

(|−→r ij | − lij)
−→r ij
|−→r ij |

, (3)

−→r ij = −→x j −−→x i , (4)

where, lij is the equilibrium distance where the force between ith and jth robot
will become zero, and k

lij
is the spring constant. Each neighbouring robot set

Si contains all robots that connect with the focal robot through the “virtual
springs” at the beginning of each experiment. This connection would not be
broken up regardless of the distance between this pair of the robots. Similar
to spring, once the interaction network of neighbouring robots is defined, it
will remain fixed throughout the experiment. In addition, according to Eq. (5),
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the inducing force would become large as the distance to equilibrium position
increase. Overall, the total elastic force drives the robot to move toward the
equilibrium position.

In order to implement our experiments, we followed experimental setup pro-
posed in [15] and modified the original AES model with adding the goal direction,
Fg, which coordinates the swarm to achieve a collective motion with a specific
direction. In addition, this modification can also lead to faster convergence of the
collective motion. Hence, the goal direction is added to the swarm as a “virtual
external force” described as: −→

F g = ωg
−→̂
vd . (5)

The goal force is parallel to the desired velocity unit vector
−→̂
vd and its magnitude

is determined by the weighting coefficient ωg. The modification steers the swarm
system moving towards the region of obstacles by adjusting the desired velocity
unit vector.

2.2 Extended AES Model

The robots’ interaction with obstacles based on the original AES model
purely relies on attraction-repulsion force, which provides a natural benchmark
to design obstacle interaction from the point of force. Indeed, the obstacle force
can be treated as a repulsive force and its magnitude is also based on the distance
between the robot and the obstacle. In contrast to elastic force in AES model,
as the robot approaches to obstacle, its magnitude should become significantly
large to avoid the collision. It should be close to the infinity when the distance
is nearly zero. When a robot detects the existence of an obstacle, the repulsive
obstacle force will appear will be imposed into the robot.

Obviously, the previous spring-like force cannot satisfy the requirement. There
are some other virtual physical-based models with more complicated relation
with distance and are utilised especially for robotic control. One of most widely
used virtual physical-based models is the Lennard-Jones (LJ) potential model [17,
18], which was proposed to interpret motion of atoms or molecules in molecular

dynamics. The obstacle force
−→
F obs,i that acts against the ith robot was designed

based on the following equation:

−→
F obs,i =

∑
o∈Oi

εobs[(
σobs
||−→r io||

)2αLJ − 2(
σobs
||−→r io||

)αLJ ]−→r io (6)

There are some parameters that need to be explained and set for the experiments.
Here, −→rio is the distance vector from an obstacle, o, to ith robot, and obstacle
set Oi is the set of all obstacles within the detecting range of ith robot. εobs
corresponds to the depth of potential function and αLJ defines the rate of change
of the potent versus distance by changing its power. The value of αLJ is set to
2, which contributes to improve the smoothness of collective behaviour. The
final important parameter is σobs, which is related to the equilibrium distance at
which the Eq. (6) is equal to zero. According to Eq. (6), by setting the obstacle
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force to zero and solving it, the proper value for σobs parameter can be obtained
in following relation:

σobs =
√

2d0,obs , (7)

where d0,obs represents the equilibrium distance where the obstacle force mag-
nitude is equal to zero. Using the above equation, the σobs can be tuned auto-
matically and its value can be determined as a function of equilibrium distance
d0,obs. In order to maintain the repulsion force only, it is necessary to adjust the
parameter σobs in a way that the obstacle exceeds the sensing range of robot be-
fore reaching the equilibrium point, i.e. d0,obs > rsens, where rsens is the sensing
range of the robots. One suggestion is to define d0,obs in a way that the obstacle
force turns to zero at the verge of detection zone as follow:

σobs =
√

2d0,obs =
√

2rsens . (8)

In this case, when the robot perceive the obstacle, the repulsive obstacle force
would appear and impose on the robot. In addition, as the robot approaches to
an obstacle, the magnitude will increase significantly.

Designing all the forces affect the collective behaviour of robots, and con-
sequently the whole swarm system. The motion dynamics of each robot would
be redefine to consider the impact from external forces including goal force and
obstacle force. The total force in Eq. (1) and Eq. (2) need be substituted by
the total force which is simply modelled as the combination of collective force in
Eq. (3), goal force in Eq. (5) and obstacle force in Eq. (6). The corresponding
equation is illustrated below:

−→
F tot,i =

−→
F c,i +

−→
F g +

−→
F obs,i , (9)

where, in the new definition, the total force
−→
F tot,i replaces the force in original

AES motion dynamic, and the
−→
F i in Eq. (3) is viewed as the collective force

−→
F c,i.

2.3 Metrics

The main aim of flocking behaviour is to achieve a common direction within
the swarm members. In addition, the robots should move collectively, which can
be characterised by an essential property, so called the coherency. The coherency
depicts the likelihood of individual remaining in the swarm system. This prin-
ciple feature can also serve as the performance index of flocking when swarm
encounters obstacles in a cluttered environment. In order to evaluate the swarm
coherency, a metric was introduced in this work. The metric is the average dis-
tance between the swarm individuals. It is also a common method to evaluate
the coherency of swarm for collective motion [13]. The coherency is presented
as:

ds =
2
∑N−1
i=1

∑N
j=1 ||−→r ij ||

N(N − 1)
. (10)
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Table 1: Setting values of related parameters in the experiments

Parameters Description Value/Range

N Population 15 [robot]
v0 Forward biasing speed 0.05 [m/sec]
α Inverse translational damping coefficient 0.01
β Inverse rotational damping coefficient 0.12
ωg Weighting coefficient for goal force 4
−→̂
vd Desired velocity unit vector (1,0)
εobs Depth of potential function 0.01
rsens Sensing range for robot 2 [m]
rR Radius of robot 0.7 [m]
robs Radius of circle obstacle 2.7 [m]
L Length of the swarm arena 35 [m]

lij Equilibrium distance {2, 3} [m]
k Magnitude of collective force {0.05, 0.3}

This metric describes the mean value of each pair of robot’s distance. It should
keep unchanged if the swarm maintains a stable motion without an abruption
or squeeze deformation.

2.4 Experimental Setup

After defining the obstacle interaction and modifying the AES model, all
the prerequisites are fully prepared to implement the simulated experiments.
The aim of these experiments is to investigate the performance of self-organised
flocking based on AES model in a cluttered environment. We designed three
different environmental conditions to implement the experiments, including ideal
environment without obstacle, single-obstacle environment and multi-obstacle
environment. There are some basic parameters (listed in Table 1) that need to
be determined. There are also some critical assumptions needed to be mentioned:
i) the simulated experiments do not consider the impact of noise, ii) the network
topology of robot swarm is determined prior to flocking and fixed. Each robot
establishes a connection within its sensing range, and iii) the equilibrium distance
lij in Eq. (3) is set to the initial distance between robots i and j.

There are essential factors that will affect the flocking behaviour in the clut-
tered environment such as population size (N), equilibrium distance (lij) and
the magnitude of collective force (k); however, we only considered lij and k in
this work. In order to eliminate the accidental error in observation, repeatabil-
ity principle need to be considered in these experiments. Therefore, each set of
experiments was repeat 10 times.
Experiments without Obstacles: In this set of experiment, swarm moves in a
given L×L square arena with the physical boundaries. Their initial distance be-
tween two nearest neighbouring robots is set to equilibrium distance. The initial
orientations and positions of the robots were selected randomly and uniformly
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distributed in the left-hand side of the arena. In this set of experiments, only
goal force and collective force are imposed into the individual robots. The set
goal force drags the swarm on the x-axis, and the collective force contributes to
configure the swarm into a stable structure.
Experiments with a Single Obstacle: This set of experiments simulate a
single obstacle environment, where the obstacle was located at a fixed point,
where the swarm will encounter. In this experiment, the obstacle avoidance in-
teraction was introduced into the collective motion. Similar with the first set of
experiments, the related parameters still remain unchanged.
Experiments with Multiple Obstacles: This set experiments study the self-
organised flocking in cluttered environment, with several obstacles which appear
in front of robots which they are moving to right-hand side of the arena. There
are three obstacles which form a triangle shape to block the motion of the flock.
Except for this, other parameters are the same as the previous experiments.
Compared with the single obstacle case, the obstacles’ force will provide a com-
plex situation. Therefore, the robots will detect more than one obstacle force
from different directions at the same time.

3 Results & Discussion

Figure 1 shows examples of the randomly selected flocking trajectories in
three different scenarios with lij = 3.5 m and N = 15. In the diagrams, the
small blue circles represent the robots in a swarm. The red arrows on each robot
represent orientation of the robot. The large red circles indicate the obstacles
which are nearly 4 times larger than the robots. Obviously, the swarm could
achieve a collective motion in an ideal environment without obstacles as shown
in Fig. 1(a). In addition, robotic swarm is also capable of avoiding the obstacles
in all the scenarios, shown in the rest of Fig. 1. In Fig. 1(b) and (c), the parameter
k associated with the collective force is set to 0.05. It can be viewed that the
flock will be separated by the obstacle, and it is difficult to recover to the original
structure. The swarm was divided into several small clusters by obstacle forces.
Figure 1 (d) and (e) present the flocking behaviour of the swarm with the same
initial conditions (position and orientation). The only difference is to improve
the magnitude of the collective force by setting it to k = 3. In this case, The
flocking performance in the ideal environment does not manifest any significant
change. Hence, the swarm still can move collectively like a solid entity with a
common direction. However, even if the robots in the swarm were segmented
by the obstacles’ force, they were able to converge into a single cluster with
a stable structure and maintain the self-organised flocking. In addition, this
flocking behaviour possesses higher flexibility and robustness. It goes through
the obstacles smoothly like a liquid flow in nature.

To analyse the behaviour of swarm in detail, we investigated the average
distance of the swarm during flocking. Figure 1(a) shows that the form of the
swarm do not change during the flocking in the environment without obstacle.
Therefore, the results if the average distance for the first case is shown with
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Fig. 1: Flocking behaviour in three environmental cases with k = 0.05; (a) with-
out an obstacle, (b) with a single obstacle, and (c) with multi-obstacle. (d) with
k = 3 and a single obstacle, and (e) with k = 3 and multi-obstacle.

dashed lines. Figure 2 illustrates the average distance of swarm for two different
collective forces, k ∈ {0.05, 3}. Figure 2(a) depicts the results for lij = 3 m from
single-obstacle flocking motion. It takes approximately t =150 sec to encounter
the obstacle and the average distance of swarm becomes bigger while they are
crossing the region. This disturbance is recovered and reached the original stable
state for large collective force. In contrast, in case of the small collective force,
the average distance was increased after the swarm passed the obstacles. The
main reason is that the swarm is divided into several clusters that were formed
in different positions far from each other. Similarly, this result also appears in
multi-obstacle cases shown in Fig 2(b). In addition, the average distance was
much larger than the single-obstacle cases. Figure 2(c) and (d) show the results
for lij = 3.5 m. It illustrates that the equilibrium distance has minor impact on
the flocking performance in cluttered environments.

4 Conclusion

This work proposed a self-organised collective motion method based on the
AES model. The main aim is to improve the AES collective motion behaviour
to make it possible for use in a real-world application. This work designed an
appropriate obstacle force and added it into the basic model. The simulation
results illustrated the proposed method can achieve the self-organised flocking
and obstacle avoidance in the complex environments. In addition, we investigated
the flocking performance under the different parameters setting for collective
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Fig. 2: Average distance with two different collective forces (a) with lij = 3 in a
single obstacle, (b) with lij = 3 in multi-obstacle, (c) with lij = 3.5 in a single
obstacle, and (d) with lij = 3.5 in multi-obstacle. Line and dashed line indicate
the median and shaded area represent the first and third quartiles.

force with a constant obstacle force. The results showed that the relationship
between these two essential forces could have a significant impact on the flocking
performance. The different equilibrium distances in the AES model were also
investigated to illustrate the functionality of the proposed method. Further work
will continue to investigate the obstacle interaction mechanisms in AES model
using real-robot experiments.

Acknowledgement

This work was supported by EU H2020 Robocoenosis [899520] and the En-
gineering and Physical Sciences Research Council (EPSRC) RAIN and RNE
[EP/R026084/1, EP/P01366X/1].

References

1. Ban, Z., Hu, J., Lennox, B., Arvin, F.: Self-organised collision-free flocking mech-
anism in heterogeneous robot swarms. Mobile Networks and Applications (2021)

2. Cavagna, A., Del Castello, L., Giardina, I., Grigera, T., Jelic, A., et al.: Flocking
and turning: a new model for self-organized collective motion. Journal of Statistical
Physics 158(3), 601–627 (2015)
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