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Abstract. Autonomous agricultural robots increasingly have an impor-
tant role in tasks such as transportation, crop monitoring, weed detection
etc. These tasks require the robots to travel to different locations in the
field. Reducing time for this travel can greatly reduce the global task
completion time and improve the availability of the robot to perform
more number of tasks. Looking at in-field logistics robots for supporting
human fruit pickers as a relevant scenario, this research deals with the
design of various algorithms for automated allocation of parking spaces
for the on-field robots, so as to make them most accessible to preferred
areas of the field. These parking space allocation algorithms are tested
for their performance by varying initial parameters like the size of the
field, number of farm workers in the field, position of the farm workers
etc. Various experiments are conducted for this purpose on a simulated
environment. Their results are studied and discussed for better under-
standing about the contribution of intelligent parking space allocation
towards improving the overall time efficiency of task completion.
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1 Introduction

Autonomous mobile robots have been extensively used to perform specific tasks
in various application domains such as care homes, warehouses, and precision
agriculture. In many of these environments, the tasks are dynamic, meaning they
can appear at any time at any part of the environment, and the robots allocated
to do these tasks should travel to one or more locations in the environment to
execute the tasks. Most of these environments are structured, hence the path of
the robot should be planned carefully in advance to reduce travelling time to
these task locations. This work specifically addresses this challenge by dynami-
cally allocating the parking spaces of robots closer to the area where demand is
high. In particular, the deployment of a fleet of agricultural robots for in-field
logistics operations to support human fruit pickers in a strawberry production
poly-tunnel environment is considered here.
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(a) (c)
Fig.1: (a) A representative image of a picker loading fruits into the robot; (b)
Graphical representation of pickers in the rows of a poly-tunnel environment;
and (c) Graphical representation of the field’s Topological map.

The work we are presenting here is build upon our previous works in fleet co-
ordination [3] and tracking of human in the field [7], with the aim of developing
a robotic fleet that supports fruit pickers in soft-fruit production by automating
transportation tasks, allowing the human pickers to focus on their job of picking.
The overall system is readily deployed in various farm environments comprising
autonomous Thorvald robotics platforms, coordinated by a central controller. A
photograph of a picker performing loading of fruits is shown in Fig.1la. The feasi-
bility study reported in [3] has shown that although the overall task completion
time and hence the picking efficiency can be improved up to 20% by deploy-
ing a fleet of robots for fruit transportation, the pickers still have to wait for
the robots after they request for one. This wait time increases when the robots
have to travel longer distances to reach the picker. While in our previous work,
the parking positions for robots (where they will wait for new transportation
tasks to be allocated) in the farm environment was randomly fixed, in this work
we focus on reducing the time pickers have to wait for a robot to serve them
by proposing and evaluating novel approaches to dynamically reallocate these
parking spaces. Hence, the contributions in this work are i) Novel approaches to
dynamically reallocate robot waiting spaces to reduce the task start delay and
overall task completion time and ii) Comprehensive experimental evaluations of
the proposed approaches in discrete-event simulations (DES).

2 Background and Related Work

Agricultural robotics have been widely researched and deployed at different
stages of food supply chain from fully autonomous precision field operations
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such as seeding, weeding and harvesting [4] to human-robot interactive applica-
tions such as in-field logistics [3]. With the background research maturing, many
agri-robotic platforms targeting specific crops and applications are made com-
mercially available [2]. Deploying a fleet of such robots is beneficial to distribute
the tasks among the robots [5] and to improve the task completion. Specifically
looking at in-field logistics operations, positioning the fleet of robots closer to
the area of high demand can reduce the robots’ travel time to the task locations
as well improve the overall task completion metrics. This work explores this
approach to dynamically allocate parking spaces for the robots.

The researchers in [6] claim that multi-robot task allocation can be reduced
to an instance of the Optimal Assignment Problem. They perform a compara-
tive study amongst popular task allocation strategies such as ALLIANCE, BLE
amd M+ to study differences in their computational complexity and impact
on efficiency of task completion, which iterates the importance of strategies in
task allocation towards maximising overall efficiency. The authors of [1] discuss
in detail about a system of Unmanned Robotic Service Units in Agricultural
tasks. Here, they point out that the three major problem areas in unmanned
agricultural robots are their interaction with field workers, maneuvering and
prioritisation of tasks. The problem of parking space allocation to robots can be
considered vital towards enhancing the quickness of approach by the robots to
farm workers, which in turn partly contributes to the improvement of the first
mentioned problem area in robotised farming.

3 Methodology

For the purpose of our research, we discretise the spatial representation of the
farm environment into a topological graph of nodes and edges. We assume human
pickers travelling from node to node while picking, until they have exceeded the
capacity of their picking crate and require a robot to take the picked fruits
away and provide a new empty crate to continue picking into. Likewise, robots
navigate along the topological graph, and we model their travel time along the
edges, based on real-world parameters. Such a discretised representation of the
problem, allows us to use the formalism of discrete event simulation (DES) to
study the problem at hand [3].

DES models the operation of a multi-agent system as a discrete sequence of
events in time and the basic unit agents, here, the human picker and the field
robot, as entities [9]. The entities in the DES model compete among themselves
for resources which are limited (e.g. in our case a node can only ever be occu-
pied by single robot or picker, modelling the spatial constraints). Consequently
when all robot are allocated to support pickers, any picker making a new re-
quest will have to wait in a queue to be allocated a robot. We use DES in our
analysis as it allows to run simulations very fast, as any time between events
(such as the waiting and travel times) discrete steps that do not occur in reality,
allowing the efficient study of the proposed parking space allocation algorithms
comprehensively.
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As described in our previous work [3], a gang of human pickers are assumed to
pick berries in a strawberry production poly-tunnel environment with plants on
raised tables in this work. Typically, the farm layout looks like a fork with a head
lane along one open end of the tunnel and navigation rows between the tables
inside the poly-tunnel, as shown in Fig.1b. Following our approach, a discrete
topological map representation of the environment can easily capture the layout
in which robots and pickers operate.A representation of the topological map of
the poly-tunnel field is shown in Fig.lc. It is assumed that there is sufficient
space along the header lanes to park multiple robots as well for other robots
to pass through. Different approaches to dynamically assigning parking spaces
along the header lane are proposed in the following.

3.1 Parking Space Allocation Algorithms

This paper suggests five different algorithms that help with the allocation of
parking spots for robots in an agricultural setup. These are designed keeping
in mind their need to be adaptable to different field sizes, number of pickers
and the average time each picker takes for performing the picking action at
each node before moving on to the next. The parking spot algorithms vary in
their complexity of decision from random allocation to speed based cumulative
ranking that takes into account factors including number of pickers, their position
in the field, the average time they take up while picking etc. This is to observe
if the allocation of parking spaces is indeed important to conserve resources
and the global task completion time, and also if the performance improvement
is consistent with the increasing complexity and intuitive intelligence of the
parking allocation algorithms.

Random Ranking This is the simplest in design of all the suggested parking
space allocation designs suggested. Of all of parking spaces spread across all row
headers of the field, one is allocated at random to the robot irrespective of the
size of the field, position of the pickers or their speed of picking. This algorithm
is vital in providing a comparison of performance to all other parking space
allocation algorithms. This is to firstly understand if there is in fact any positive
consequence to providing intelligence to the task of parking space allocation.
Fig.2c shows a demonstrative case of having implemented the Random Ranking
technique. The figure shows 10 rows of crops and pickers located in rows 3,5,9,10.
Since Random Ranking is independent of any initial parameters of the field and
pickers, it randomly generates row 2 to be the assigned parking space.

Middle Row Ranking Middle Row Ranking is built on the logic that a robot
placed at a parking space near the center of the field would enable it to fairly
access picker calls from any part of the field. In case of n robots, the robots shall
be recommended to be parked sequentially in parking spaces at every 1/nth of the
field. This is the second most simple design for parking space allocation suggested
in this paper. Fig.2d shows a demonstrative case of having implemented the
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Middle Row Ranking technique. The figure shows 10 rows of crops and Pickers
located in rows 3,5,9,10. Middle Row Ranking entirely bases its decision upon
the width of the field, i.e. the number of rows in the field. Therefore, the row 5,
one of the centre rows is assigned as the parking space.
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Fig.2: Demonstrative Diagrams of (a) Cumulative Ranking, (b) Speed Based
Cumulative Ranking, (¢) Random Ranking, (d) Middle Row Ranking, (e) Dis-
tance Based Ranking are presented along with their reference legend in (f)

Distance Based Raking Distance Based Ranking looks at the distance in
between each of the pickers in the field. The robot is allocated a parking space
that lies in the approximate centre of the rows that indicate the largest gap
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between the pickers. The logic behind this algorithm is to tackle cases in which
the concentration of pickers is to one side of the field rather than them being
spread evenly across the field, which is the intuitive assumption made in the
previously suggested Middle Row Ranking. Fig.2e shows a demonstrative case
of having implemented the Distance Based Ranking technique. The figure shows
10 rows of crops and Pickers located in rows 3,5,9,10. This technique bases
its decision upon the comparative distance in between the pickers. So despite
the exact same initial conditions as discussed in the previous ranking technique
Middle Row, the result through Distance Based Ranking varies choosing row
7 as the assigned parking space, which lies in the centre of the largest gap d2,
indicating the maximum distance between any two pickers in the given case.

Cumulative Ranking Cumulative Ranking makes a parking space allocation
decision by aggregating the individual parking spot preferences given out by each
of the pickers based on their position in the field. Fig.2a shows a demonstrative
case of having implemented the Cumulative Ranking technique. It is seen in the
figure that there are four Pickers A ,B,C and D located in rows 3,5,9,10. The
individual preferences assigned to rows by each of the pickers can be observed in
the figure. Picker A gives out its preference of parking space allocation where,
the space near its own row, row 3 is given the first priority with rank 1 and
the rows that are subsequently adjacent are given with incrementally increasing
ranks indicating a decreased preference to rows that are farther from the row
of that particular picker. Pickers B, C and D do the same to all the rows of
the field. The ranks given by each of the pickers for each of the rows are added
up. The aggregated ranks of rows are now observed to find the least objected
row, i.e. the row with the least rank number. The parking space near the header
of this row is considered to be the most suitable one. In case of multiple rows
holding the minimum rank, the median of that sequence of rows is taken as the
winner. As a result of this, in this example row 7 which is the most mutually
agreeable row amongst the pickers is assigned as the parking space.

Preferential Cumulative Ranking This is an extension from the Cumulative
Ranking Technique but with inclusion of consideration given to the time taken by
the individual pickers to move from one node to another i.e to perform the pick-
ing action. In simple terms, rankings given by the faster pickers are prioritised
over that of the slower pickers. To enable this, the mean value of the set of times
taken by each of the pickers to go from one node to another is calculated. Faster
pickers are classified as those who take time less than or equal to the calculated
mean value, those remaining are bracketed as the slower pickers. After this clas-
sification, the same procedure explained in Cumulative Ranking is carried out.
The only difference is that, the slower pickers change their ranking preference
for every two consecutive rows instead of one as in case of faster pickers. This is
done in an attempt to mathematically reduce the implication of preference given
by the slower pickers. Fig.2b shows a demonstrative case of having implemented
the Preferential Cumulative Ranking technique. Here, Picker A which is a picker
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whose picking time is assumed to fall under the average picking time of all the
pickers in the field is given a lesser preference that can be noticed through the
change in the ranking priority it provides for the same case as in the Cumulative
Ranking Technique. Therefore, while aggregating the preferences this time, row
8 is found to be the most agreeable row, it can be noted that row 8 is further
away from the slow picker, Picker A than row 7 which was the calculated result
without the preferential treatment in ranking.

4 Experimental Evaluation and Results

The performance of the parking space allocation algorithms mentioned in the
methodology section are put through experimentation on a simple simulated
environment. In order to keep the parametric values of the simulation as realistic
as possible, the values defining the spacing of nodes in the farm, speed of the
pickers while picking at each node, their capacity to hold on to yield before
calling for a robot are derived through an approximation of the corresponding
values used in [3] that has a similar experimental setup. This paper by itself uses
verified empirical data obtained from real farms.

4.1 Experimental setup

In the simulated experimental setup the test environment is assumed to be a
forked rectangular field with numerous parallel rows which have equally spaced
nodes or way points that the pickers pass through in the course of their picking
action. Based on data from [3], the length of each row is assumed to be 120
meters, the node to node distance in the field is assumed as 5 meters, thus
creating 24 nodes in each row. There is a variable called 'picker time’ that is
used to indicate the time taken by a picker to go from one node to another,
i.e. the time he spends picking at each node. This value is set at 2450 seconds.
The robot is assumed to move at a speed of 1 m/s. This would imply that the
robot takes 5 seconds to move from one node to another. As per the experiment
the picker calls for the robot after having observed his collecting tray to be full.
The rate at which he calls for the robot would differ based on how the yield
of the crop/fruit is at every node. Based on the results and data observed in
the experiments of [3], it is calculated that the picker approximately calls for the
robot once every 7.7 nodes. So for this experiment, it is assumed that every picker
calls for the robot once for every 8 nodes he traverses. All of the experimental
results discussed below were aggregated over 20 randomised trials.

Comparison of Ranking Techniques by varying the number of rows
The first experiment conducted is that of varying the width of the field by
changing the number of rows (from 5 to 50) and holding the number of pickers
on the field as constant (number of pickers = 3). The performance of the different
ranking strategies are shown in comparison to one another through the graphs in
Fig.3. The two evaluation metrics observed are Global Task Completion Time,
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which is the total time taken for the task to complete. This is an indicator or the
task completion efficiency. Another is the Robot Travel Time which is the Total
Time for which the Robot has been in motion, this is an indicator of resource
conservation.

(b)

Fig. 3: Comparison of Performance of different ranking techniques by varying the
number of rows from 5 to 50 and observing changes in (a) Robot Travel Time
and (b) Global Task Completion Time

Comparison of Ranking Techniques by varying the number of pickers
The next experiment conducted is that of varying the number of pickers (from
3 to 15) with a constant number of rows (number of rows = 100) and the same
picking speed as before. The performance of different ranking strategies for picker
count variation are shown in comparison to one another through the graphs in
Fig.4.

Impact of differences in Picking Time amongst Pickers The impact of
differences in Picking Time amongst the Pickers is studied through this experi-
ment. While assuming the number of Pickers to be 3 and varying the number of
rows in the field, the performance of Cumulative Ranking is compared with that
of Preferential Cumulative Ranking. It is thought that by giving a bias to faster
pickers efficiency can be improved. Fig.5 represents results from the experiment
studying effects of change in speed of picking amongst pickers
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(b)

Fig. 4: Comparison of Performance of different ranking techniques by varying the
number of pickers from 3 to 15 and observing changes in (a)Robot Travel Time
and (b)Global Task Completion Time

5 Discussions and Conclusion

It can be observed from Fig 3, that in the experiment of comparing the rank-
ing techniques through varying the number of rows, that the performance of
the different ranking methods are proportional with respect to the two evalua-
tion metrics. As expected, all remaining ranking strategies out perform Random
Ranking, confirming the positive impact caused by intelligent planing of parking
spaces. The best performer here is Cumulative Ranking, followed by Distance
based Ranking and then Middle Row Ranking.

In Fig 4, showing the results of comparison of ranking techniques through
varying the number of pickers, similar to the previous case the performance of the
different ranking methods are proportional with respect to the two evaluation
metrics. Here, it can be seen that with increase in the number of pickers for a fixed
field size, Distance Based Ranking encounters a deterioration in performance
only managing to be narrowly better than Random Ranking. This is because
with the rise in number of pickers, the chances of a population skew of pickers
over to one side of the field decreases, which was one of the main areas combated
by the Distance Ranking methods. It can also be seen that Cumulative Ranking
too begins to deteriorate with increase in the number of pickers, since the almost
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(b)

Fig.5: Comparison of Performance of Cumulative and Preferential Cumulative
Ranking techniques by varying the speed of picking amongst pickers and observ-
ing changes in (a) Robot Travel Time and (b) Global Task Completion Time

even distributions of the picker population might marginally favour one row over
the other in case of multiple equally desired row priorities. This is why Middle
Row Ranking works best with a High Pickers to Rows ratio, since there would
most likely be equal demand for the robot from all areas of the field that would
be best tackled by Middle Row Ranking.

In Fig 5 that represents results from the experiment studying effects of change
in speed of picking amongst pickers, the results are different from what was hy-
pothesised. The unbiased Cumulative Ranking out performs the speed based
Preferential Cumulative ranking. This has been observed to be due to the fol-
lowing reason: though the robot might initially access the faster pickers quicker,
when the demand for robot arises in the slower picker, the robot might have to
for travel longer to reach this slow picker, this in turn increases the subsequent
wait time of the faster pickers, slowing down the task. The results might how-
ever be different if in addition to the slowness, there is a reduction in demand
from the slower pickers for access to the robots. Though this theoretically makes
sense, it is highly unlikely that the changes in abilities and robot requirements
of pickers working in the same field in a standard operation such as picking
would produce such a case. Mathematically, it can be said that the constant of
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variation [8] in the picking speed and robot requirements of the pickers would
not be high enough to trigger an impact due to them. Fig 5 shows the results
from these experiments.

From the results obtained, it is noteworthy to observe that there is approxi-
mately a 20% decrease in the Global Task Completion time and a 30%
decrease in robot usage when switching from a Randomised parking space
allocation technique to adapting the Cumulative Ranking strategy. This proves
the improvement to efficiency given by intelligent parking space allocation.

The results from the experiments performed on the inclusion of intelligence
in parking space allocation for the waiting period of an autonomous agricultural
robot show a positive impact on mechanical conservation in the use of robot due
to reduced operational time and also a reduction in the global task completion
time due to lower waiting periods by the pickers. Though all of the experiments
shown in this paper demonstrate the case of a single robot, the methodologies
can be easily extended to a system of multiple robots. There also lies interesting
possibilities for the extension of these ideas to suit various field setups and farm
shapes. These aspects of this research shall be addressed through continued work
in the future.
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