

A ROBOT IN A BOX:

ADVENTURES IN GPU-ACCELERATED ROS2 DEVCONTAINERS FOR EDUCATION AND ASSESSMENT

Prof Marc Hanheide
Lincoln Centre for Autonomous Systems (L-CAS)

Context: CMP3103 & CMP9767

The Problem - Traditional Setup Hell

"It works on my machine" syndrome

Students spend hours/days on environment setup

Multiple OS dependencies (Windows, macOS, Linux)

CUDA/GPU driver conflicts

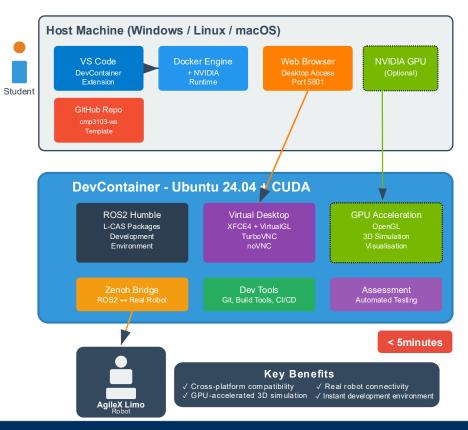
Version mismatches between ROS2, Python(!!), packages, and dependencies

Teaching time lost to troubleshooting

Inconsistent environments across cohort

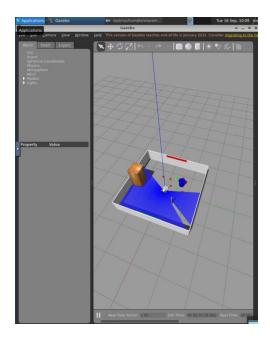
Result: More time debugging than learning robotics

```
ack (most recent call last):
ile "/home/user/ros2 ws/install/my package/lib/my
kage/my_node", line 33, in <module>
sys.exit(load_entry_point('my-package--0.0.0',
le_scripts', 'my_node')())
le "/home/user/ros2 ws/install/my package/lib/py
3.8/site-packages/my_package/my_node.py", line 28
my_no = SimplePublisher()
le "/home/user/ros2 ws/install/my package/lib/py
.8/site-packages/my_package/my_node.py", line 12
self.publisher = self.create_publisher(Twist,
ile "/opt/ros/foxy/lib/python3.8/site-packages/rc
node.py", line 1140, in create publisher
check for type support (msg type)
ile */opt/ros/foxy/lib/python3.8/site-packages/rcl
ype_support.py", line 20, in check_for_type_suppo
ts = msg_type.__class__._TYPE_SUPPORT
ributeError: type object 'type' has no attribute
PE_SUPPORT* This might be a ROS 1 message type but
should be a ROS 2 message type. Make sure to sous
  r ROS 2 workspace after your ROS 1 workspac
```



Our Solution - Robot in a Box

- Based on GitHub Repository Template: https://github.com/LCAS/ros2 pkg template/
- DevContainer + Virtual Desktop
- Development Container: Fully configured ROS2 environment
- Virtual Desktop: Web-based 3D accelerated interface (VirtualGL + noVNC)
- Cross-platform: Windows, Linux, macOS hosts
- GPU Support: NVIDIA runtime for simulation and visualisation, and CUDA development
- Rapid setup: From clone to working environment
- Isolated container, network no "DDS leakage"
- Zenoh Bridge for talking to robot (running cross compiled version of our docker image on robots)


Robot in a Box: DevContainer Architecture

Technical Architecture

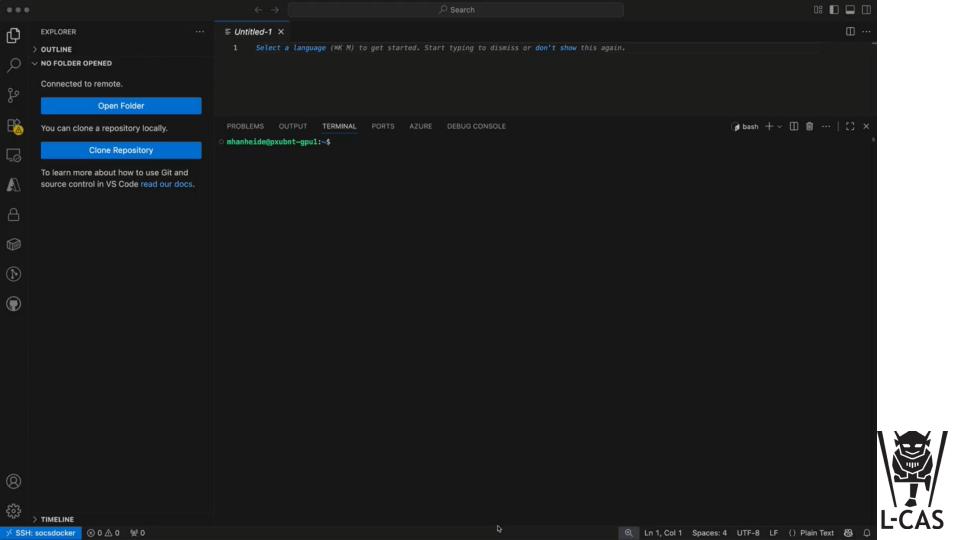
Built on Production-Ready Technologies

Base Image: nvidia/cuda:XX-runtime-ubuntuXX

ROS Framework: ROS2 Humble (with Cyclone DDS by default)

Virtual Desktop: VirtualGL + TurboVNC + noVNC

Development: DevContainer integration


Communication: Zenoh bridge (built-in container) for real robot connectivity

Desktop Environment: XFCE4 with GPU acceleration (with NVIDIA)

Containerised, consistent, and cross-platform

Educational Impact

Metric	Traditional Setup	DevContainer Solution	Improvement
Setup Time	2-3 workshop sessions	5 minutes	Order of magnitude reduction
Success Rate	~60%	98%	38% increase
Support Tickets	High volume	85% reduction	Major time saving
Teaching Focus	IT troubleshooting	Robotics content	Pure learning
Platform Support	OS-dependent	Universal	Complete coverage

Zenoh Bridge - Connecting Virtual to Real

Seamless Container-to-Robot Communication

- The Challenge: DevContainer isolation vs real robot access
- The Solution: Zenoh ROS2 bridge enables transparent communication
- Key Benefits:
 - Develop in container, deploy to real hardware with on command line:

```
zenoh-bridge-ros2dds -e tcp/10.82.0.XXX:7447
```

• Students code once, run "everywhere" (and don't mess with robot installation)

Lessons Learned - Deployment Insights

What Worked

- Web-based desktop removes installation barriers
- GPU passthrough enables proper simulation
- Version control integration maintains consistency
- Cross-platform compatibility works reliably
- Student satisfaction dramatically improved
- Teaching efficiency significantly increased

Challenges A

- Network bandwidth for initial pulls with very many students
- Windows Docker Desktop permissions
- Container resource management on shared machines
- Initial learning curve for DevContainer concept
- Image size and storage requirements

Resources and Links

- Try yourself (e.g. in code spaces):
 https://github.com/UoL-SoCS/cmp3103-ws/tree/roscon25
- Useful ROS2 workspace repository template: https://github.com/LCAS/ros2 pkg template/
- Our instructions for students to use it: https://github.com/LCAS/teaching/wiki/CMP3103
- The Lincoln Centre for Autonomous Systems (L-CAS): https://lcas.lincoln.ac.uk/

Adopted by Tom Howard at Sheffield Robotics

